Abstract:
According to one embodiment, a secondary battery is provided. The secondary battery includes a first electrode having a first current collector, second electrode having a second current collector, and an aqueous electrolyte. The first electrode includes a first lead, and a first joint for electrically connecting the first current collector and the first lead. At least a part of the surface of the first current collector has a first current collector coating. At least a part of the surface of the first lead has a first lead coating. The thickness of the first lead coating is larger than the thickness of the first current collector coating.
Abstract:
According to one embodiment, there is provided a secondary battery including a positive electrode, a negative electrode, and an aqueous electrolyte. The positive electrode includes a positive electrode active material. The negative electrode includes a negative electrode active material and an additive resin containing a hydroxyl group unit and a first unit. The first unit consists of at least one of a butyral unit and an acetal unit. A content ratio of a content of the first unit contained in the additive resin to a content of the hydroxyl group unit contained in the additive resin is in a range of 1.2 to 18.
Abstract:
A negative electrode for a nonaqueous electrolyte secondary battery of the embodiment includes a current collector; and an electrode mixture layer that is formed on the current collector and contains a first particle, a second particle and a binder. The first particle is comprised of silicon, a silicon oxide and a carbonaceous material. The second particle has electron conductivity and an oxygen content of 1% or lower. The electrode mixture layer is characterized in that silicon concentrations in the vicinity of the surface having contact with the current collector and the vicinity of the opposite surface to the surface having contact with the current collector are higher than a silicon concentration at the central part in the thickness direction.
Abstract:
According to one embodiment, there is provided a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer, and a non-aqueous electrolyte. At least one of the positive electrode active material layer and the negative electrode active material layer contains carbon dioxide and releases the carbon dioxide in the range of 0.1 ml to 10 ml per 1 g when heated at 350° C. for 1 minute.
Abstract:
A nonaqueous electrolyte secondary battery of an embodiment includes an electrode group including a cathode collector, a cathode having a cathode active material layer formed on the cathode collector, an anode collector, an anode having an anode active material layer formed on the anode collector, and a separator placed between the cathode and the anode, an exterior member housing the electrode group, and a nonaqueous electrolyte filled in the exterior member. In the nonaqueous electrolyte secondary battery, the anode collector is at least one metal selected from among Fe, Ti, Ni, Cr, and Al, or an alloy containing at least one metal selected from among Fe, Ti, Ni, Cr, and Al. In the nonaqueous electrolyte secondary battery, a coating containing at least one metal selected from Au and Cu is formed on at least one of the surfaces of the anode collector excluding the anode active material layer.
Abstract:
A nonaqueous electrolyte secondary battery of an embodiment includes an exterior member; a positive electrode housed in the exterior member, a negative electrode containing an active material and housed in the exterior member so as to be spatially separated from the positive electrode via a separator, and a nonaqueous electrolyte filled in the exterior member. The negative electrode includes a negative electrode current collector and a negative electrode active material layer on the negative electrode current collector. A tensile strength of the negative electrode is 400 N/mm2 or more and 1200 N/mm2 or less. A peel strength between the negative electrode current collector and the negative electrode active material layer is 1.5 N/cm or more and 4 N/cm or less.
Abstract translation:实施方式的非水电解质二次电池包括外部构件; 容纳在外部构件中的正极,含有活性物质的负极,并容纳在外部构件中,以便通过隔膜与正极空间分离,以及填充在外部构件中的非水电解质。 负极在负极集电体上具有负极集电体和负极活性物质层。 负极的拉伸强度为400N / mm 2以上且1200N / mm 2以下。 负极集电体和负极活性物质层之间的剥离强度为1.5N / cm以上且4N / cm以下。
Abstract:
A nonaqueous electrolyte secondary battery according to an embodiment includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The negative electrode contains a negative electrode active material. A lithium insertion-extraction reaction potential of a negative electrode active material is higher than the oxidation-reduction potential of lithium by a value of 1 V or more. The nonaqueous electrolyte contains an electrolytic salt, a nonaqueous solvent, at least one hydroxyalkylsulfonic acid, and at least one sulfonate.
Abstract:
According to one embodiment, there is provided a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode including a negative electrode active material layer, and a non-aqueous electrolyte. The negative electrode active material layer contains carbon dioxide and releases the carbon dioxide in the range of 0.1 ml to 5 ml per 1 g when heated at 200° C. for 1 minute.
Abstract:
According to one embodiment, a non-aqueous electrolyte secondary battery is provided. A negative electrode layer in the battery includes a lithium titanium oxide, and has first region(s) and a second region on a surface. The first region(s) is/are surrounded by the second region and have a lower lithium concentration. The second region has a higher lithium concentration. The negative electrode layer satisfies the formula (I): T2
Abstract:
According to one embodiment, an electrode structure is provided. The electrode structure includes an electrode group and a hold member. The hold member clamps the electrode group in a thickness direction of the electrode group. The electrode group satisfies a formula (1) below. m/L≤0.01 (1) Here, m is a difference Δt in a cross section which is selected from among a plurality of cross sections along the thickness direction of the electrode group. L is a maximum length of the electrode group in an in-plane direction orthogonal to the thickness direction.