Abstract:
A hydrogen production system according to an embodiment includes an evaporator that evaporates seawater to generate water vapor, an electrolytic device that electrolyzes the water vapor supplied from the evaporator to produce hydrogen, and a removal mechanism that is provided between the evaporator and the electrolytic device and removes a seawater component from the water vapor.
Abstract:
A molecular detection apparatus according to an embodiment includes: a collection unit collecting a detection target gas containing a molecule to be detected; a substitution unit substituting a part of a molecular structure of at least a part of the molecule to generate a substitution product; a detector including a plurality of detection cells each having a sensor unit and an organic probe disposed at the sensor unit, the organic probe capturing the molecule or the substitution product; and a discriminator discriminating the molecule by a signal pattern based on an intensity difference of detection signals generated with the molecule or the substitution product being captured by the organic probes of the plurality of detection cells.
Abstract:
A negative electrode for a nonaqueous electrolyte secondary battery of the embodiment includes a current collector; and an electrode mixture layer that is formed on the current collector and contains a first particle, a second particle and a binder. The first particle is comprised of silicon, a silicon oxide and a carbonaceous material. The second particle has electron conductivity and an oxygen content of 1% or lower. The electrode mixture layer is characterized in that silicon concentrations in the vicinity of the surface having contact with the current collector and the vicinity of the opposite surface to the surface having contact with the current collector are higher than a silicon concentration at the central part in the thickness direction.
Abstract:
A nonaqueous electrolyte secondary battery of an embodiment includes an electrode group including a cathode collector, a cathode having a cathode active material layer formed on the cathode collector, an anode collector, an anode having an anode active material layer formed on the anode collector, and a separator placed between the cathode and the anode, an exterior member housing the electrode group, and a nonaqueous electrolyte filled in the exterior member. In the nonaqueous electrolyte secondary battery, the anode collector is at least one metal selected from among Fe, Ti, Ni, Cr, and Al, or an alloy containing at least one metal selected from among Fe, Ti, Ni, Cr, and Al. In the nonaqueous electrolyte secondary battery, a coating containing at least one metal selected from Au and Cu is formed on at least one of the surfaces of the anode collector excluding the anode active material layer.
Abstract:
A nonaqueous electrolyte secondary battery of an embodiment includes an exterior member; a positive electrode housed in the exterior member, a negative electrode containing an active material and housed in the exterior member so as to be spatially separated from the positive electrode via a separator, and a nonaqueous electrolyte filled in the exterior member. The negative electrode includes a negative electrode current collector and a negative electrode active material layer on the negative electrode current collector. A tensile strength of the negative electrode is 400 N/mm2 or more and 1200 N/mm2 or less. A peel strength between the negative electrode current collector and the negative electrode active material layer is 1.5 N/cm or more and 4 N/cm or less.
Abstract translation:实施方式的非水电解质二次电池包括外部构件; 容纳在外部构件中的正极,含有活性物质的负极,并容纳在外部构件中,以便通过隔膜与正极空间分离,以及填充在外部构件中的非水电解质。 负极在负极集电体上具有负极集电体和负极活性物质层。 负极的拉伸强度为400N / mm 2以上且1200N / mm 2以下。 负极集电体和负极活性物质层之间的剥离强度为1.5N / cm以上且4N / cm以下。
Abstract:
A molecular detection apparatus according to an embodiment includes: a distributor which ionizes a target containing substances to be detected, applies voltage to ionized substances, and extracts the substances to be detected according to a time-of-flight based on the speed; a detector which detects the substance to be detected dropped from the distributor; and a discriminator which discriminates the substance to be detected. The detector includes: a plurality of detection units including field effect transistors using graphene layers; and a plurality of organic probes which are provided on the graphene layers, and at least some of which have different bond strengths with the substances to be detected. The substance to be detected is discriminated depending on a signal pattern based on intensity differences of the detection signals generated by differences in the bond strengths between the organic probes and the substances to be detected.
Abstract:
A molecular detection apparatus according to an embodiment includes: a collection unit collecting a detection target gas containing a molecule to be detected; a substitution unit substituting a part of a molecular structure of at least a part of the molecule to generate a substitution product; a detector including a plurality of detection cells each having a sensor unit and an organic probe disposed at the sensor unit, the organic probe capturing the molecule or the substitution product; and a discriminator discriminating the molecule by a signal pattern based on an intensity difference of detection signals generated with the molecule or the substitution product being captured by the organic probes of the plurality of detection cells.
Abstract:
A negative electrode active material for a nonaqueous electrolyte secondary battery has a carbonaceous substance, a silicon oxide phase in the carbonaceous substance, a silicon phase in the silicon oxide phase, and a zirconia phase in the carbonaceous substance. The negative electrode active material has a diffraction peak at 2θ=30±1° in powder X-ray diffraction measurement.
Abstract:
According to one embodiment, an electrochemical cell 1 includes: an electrode layered body 10 having an electrolyte 10e having a first surface 10e1 and a second surface 10e2 positioned opposite to the first surface 10e1, a cathode 10c in contact with the first surface 10e1, and an anode 10a in contact with the second surface 10e2; and a gas-flow suppression part 20 that is positioned at least partially adjacent to a side surface of the electrode layered body 10, and is formed from a material different from those of the electrolyte 10e, the cathode 10c, and the anode 10a.
Abstract:
A molecular detection apparatus 1 according to an embodiment includes: a collection unit collecting detection target gas containing molecules to be detected; a detector including a detection cell having an organic probe provided at a sensor unit, the organic probe capturing the collected molecule to be detected; and a discriminator discriminating the molecule to be detected by a detection signal generated by the molecule being captured by the organic probe. The detection cell has the organic probe containing a phosphonic acid structure or phosphoric acid structure.