Abstract:
A cold storage material particle of an embodiment includes at least one first element selected from the group consisting of a rare earth element, silver (Ag), and copper (Cu) and a second element that is different from the first element and forms a multivalent metal ion in an aqueous solution, in which an atomic concentration of the second element is 0.001 atomic % or more and 60 atomic % or less, and a maximum value of volume specific heat at a temperature of 20K or less is 0.3 J/cm3·K or more.
Abstract:
A two-stage heat regenerating cryogenic refrigerator may include: a vacuum vessel; a first and second cylinder in the vessel; the second cylinder coaxially connected to the first cylinder; a first regenerator in the first cylinder, the first regenerator accommodating heat regenerating material (HRM) 1; and a second regenerator in the second cylinder accommodating HRM 2, HRM 2 including plural HRM particles, each HRM particle including a heat regenerating substance having a maximum value of specific heat at a temperature of 20 K or less of 0.3 J/cm3·K or more and a metal element; each HRM particle including a first and second region, the second region being closer to each HRM particle's outer edge than the first, and the second region having a metal element higher concentration than the first, the first and second region containing the heat regenerating substance, and the heat regenerating substance contains an oxide or oxysulfide component.
Abstract:
A method may produce a heat regenerating material particle, including: preparing a slurry by adding a powder of the heat regenerating substance to an alginic acid aqueous solution and mixing the powder of the heat regenerating substance and the aqueous alginic acid solution; and forming a particle by gelling the slurry by dropping the slurry into a gelling solution. The gelling solution may include a metal element including calcium (Ca), manganese (Mn), magnesium (Mg) beryllium (Be), strontium (Sr), aluminum (Al), iron (Fe), copper (Cu), nickel (Ni), and cobalt (Co). The forming may involve controlling the gelation time so that a concentration of the metal element in a first region of the particle becomes lower than a concentration of the metal element in a second region. The second region may be closer to an outer edge of the particle compared to the first region.
Abstract:
According to one embodiment, a secondary battery is provided. The secondary battery includes: a positive electrode containing a positive electrode active material; a negative electrode; a separator arranged between the positive electrode and the negative electrode; and a first aqueous electrolyte held in at least the positive electrode. pH of the first aqueous electrolyte is more than 7. The positive electrode active material contains a lithium-containing compound that exhibits an average operating potential of less than 4.0 V based on lithium metal.
Abstract:
A superconducting coil of embodiments includes a substrate having a curved surface, a superconducting wire wound on the curved surface, the superconducting wire having a first region and a second region facing the first region, a first resin layer surrounding the superconducting wire and including a plurality of first particles and first resin surrounding the first particles, and a second resin layer positioned between the first region and the second region, the second resin layer covering the first resin layer and including a plurality of second particles and second resin surrounding the second particles and being made of material different from material of the first resin.
Abstract:
The embodiments provide an acidic gas absorbent, an acidic gas removal method using the absorbent, and an acidic gas removal apparatus using the absorbent. The absorbent absorbs an acidic gas in a large amount and is hardly diffused. The acidic gas absorbent according to the embodiment comprises an amine compound represented by the following formula (1): [In the formula, each R1 is independently hydrogen, an alkyl group, or a primary or secondary amino-containing aminoalkyl group provided that at least one of R1s is the aminoalkyl group, each R2 is independently hydrogen, an alkyl group, hydroxy, amino, hydroxyamino, or a primary or secondary amino-containing aminoalkyl group, the alkyl or aminoalkyl group contained in R1 or R2 has a straight-chain or branched-chain skeleton and may be substituted with hydroxy or carbonyl, and p is 2 to 4.]
Abstract:
A carbon dioxide absorbent of an embodiment includes a solid resin compound containing a structural unit expressed by the following formula (1). X in the formula (1) is a halogen element.
Abstract:
According to one embodiment, provided is a carbon dioxide fixation device including a nonaqueous phase and an aqueous phase. The nonaqueous phase includes an ionic liquid, an enzyme body, and a mediator. The enzyme body catalyzes a reduction reaction of carbon dioxide or a reduced product of carbon dioxide. The mediator acts as a reducing agent or coenzyme in this reduction reaction. The nonaqueous phase is configured such that the reduction reaction generates a reaction product. The aqueous phase includes an extraction liquid containing water. The aqueous phase is configured such that the abovementioned reaction product is supplied thereto from the nonaqueous phase.
Abstract:
An electrode for a nonaqueous electrolyte battery according to the present embodiment includes: a current collector; and an active material layer that is formed on one surface or both surfaces of the current collector. The active material layer contains a fluorine-containing aromatic compound, in which at least one of hydrogen atoms bonded to the aromatic ring has been substituted by fluorine, at 0.01 mass % or more and 1.0 mass % or less.
Abstract:
A negative electrode active material of an embodiment for a nonaqueous electrolyte battery includes silicon or silicon oxide including silicon inside, a carbonaceous substance containing the silicon or the silicon oxide including silicon inside, and a phase including a silicate compound and a conductive assistant, the phase being interposed between the silicon or the silicon oxide including silicon inside and the carbonaceous substance. The silicate compound is a complexed oxide including an oxide including at least one element selected from the group consisting of; an alkaline earth element, a transition metal element, and a rare-earth element and a silicon oxide.