Abstract:
A workpiece detector includes a camera to acquire a two-dimensional image of a search range within which workpieces are disposed. A three-dimensional sensor detects a three-dimensional shape of a three-dimensional detection area. A workpiece extraction section processes the two-dimensional image to extract candidate workpieces. An area setting section sets a three-dimensional detection areas respectively corresponding to the candidate workpieces. A prioritizing section sets an order of priority to the three-dimensional detection areas to give higher priority to one three-dimensional detection area containing more of the candidate workpieces. A sensor control section controls the three-dimensional sensor to detect the three-dimensional shape of each three-dimensional detection area in the order of priority. Every time the three-dimensional shape is detected, a workpiece detection section searches the workpieces based on the detected three-dimensional shape to detect a pickable workpiece.
Abstract:
This robot hand includes a first finger portion and a second finger portion being relatively movable in a direction in which an object to be grasped is grasped and bar-shaped claw members fixed to the first finger portion and the second finger portion. A plurality of claw members are fixed in parallel to at least either the first finger portion or the second finger portion.
Abstract:
A robot system includes at least one robot, a first sensor, at least one second sensor, and circuitry. The at least one robot is to work on a workpiece. The first sensor is to detect a three-dimensional shape of the workpiece. The at least one second sensor is to detect a three-dimensional position of the workpiece. The circuitry is configured to control the at least one robot based on teaching data. The circuitry is configured to correct the teaching data according to the three-dimensional shape detected by the first sensor. The circuitry is configured to correct the teaching data according to the three-dimensional position detected by the at least one second sensor.
Abstract:
A workpiece takeout system includes a robot arm and a disposed-state detector. The robot arm is configured to perform a workpiece takeout operation to take out a workpiece disposed in an area among a plurality of areas. The disposed-state detector is configured to detect a disposed state of the workpiece and is configured to, while the robot arm is performing the workpiece takeout operation to take out the workpiece disposed in the area among the plurality of areas, detect a disposed state of another workpiece disposed in another area among the plurality of areas.
Abstract:
A robot system includes a robot, a container, a determinator, a motion controller, a torque limitter, and a stirring operation controller. The robot includes a drive source for driving a joint part and an end effector. The determinator determines whether a workpiece capable of being held by the end effector exists among workpieces accommodated within the container. The motion controller controls a motion of the drive source. When the determinator determines that there is no workpiece capable of being held by the end effector, the torque limitter limits a motion torque of the drive source. The stirring operation controller allows the motion controller to perform a stirring operation, by which the workpieces accommodated within the container are stirred by the end effector, in a state where the motion torque is limited by the torque limitter.
Abstract:
A robot apparatus includes a robot arm and a held-state detector. The robot arm includes a first holder configured to hold a to-be-held object. The held-state detector is coupled to the robot arm and is configured to detect a held state of the to-be-held object held by the first holder while the robot arm is transferring the to-be-held object.