Abstract:
A system for tracking a moving vehicle body applies a dynamic projection mapping technique utilizing a high-speed projector. The system includes a tracker configured to track a vehicle body of a vehicle to generate vehicle body position information, a quality inspector configured to generate surface quality information of the vehicle, a matcher configured to generate mapping information in which the vehicle body position information and the surface quality information are mapped, and an indicator configured to display the mapping information on a surface of the vehicle body of the vehicle.
Abstract:
A vehicle inspection method in a production line of a vehicle includes: performing a part inspection in steps of manufacturing parts of the vehicle, the part inspection in which each of the parts after being manufactured is inspected with an inspection device and which includes one or more inspection items; storing a result of the part inspection in a storage device such that the result is associated with the part; and displaying the result of the part inspection, on a display device used in a completed vehicle inspection for inspecting a completed vehicle serving as the vehicle that is completed, information indicating at least the part of the parts corresponding to a failed item serving as the inspection item which is determined not to be passed in the result of the part inspection stored in the storage device and information indicating the failed item.
Abstract:
An automated vehicle inspection system includes a diagnostic terminal mounted in a vehicle and connected to an engine control unit (ECU) of the vehicle, sequentially operating individual electric components through the ECU based on stored electric component inspection items while the vehicle passes through a watertight booth and receiving individual operating currents measured to determine whether the electric components normally operate, a transceiver connecting to the diagnostic terminal and a wireless diagnostic communication network through an antenna disposed in the watertight booth process line, and an inspector recognizing a vehicle ID of a vehicle that enters the watertight booth, transmitting inspection items according to a vehicle type and specification of the vehicle ID to the diagnostic terminal through the diagnostic communication network, and recognizing a vehicle ID of a vehicle that leaves the watertight booth to collect inspection results determined in the diagnostic terminal.
Abstract:
A vehicle is able to be set to operate in a factory mode (as opposed to a normal mode) in which certain features are disabled, such as an alarm system, a power liftgate, etc. This allows assembly workers to assemble, test, and calibrate the vehicle without various systems in the vehicle being undesirably activated. While in the factory mode, the vehicle can accomplish multiple ignition on/off cycles while being tested or driven between stations. A steering column and connected steering wheel are provided in the vehicle, and are situated between an instrument panel and a front seat. In response to the ignition completing an on/off cycle, a controller commands a motor to move the steering wheel and steering column to a predetermined position that is based on a visibility of the instrument panel relative to the steering wheel and steering column.
Abstract:
A wheel nut engagement checking system for a vehicle delivered by a conveyor includes: a moving member disposed at one side of the conveyor; a wheel lifting apparatus disposed on the moving member, and lifting a wheel of the vehicle from the conveyor to a predetermined height; a wheel nut torque checking apparatus provided on an arm of a robot disposed on the moving member, engaging a nut runner to a wheel nut of the wheel, and checking an engage torque of the wheel nut by rotating the nut runner; and a controller controlling a speed of the moving member, lifting the wheel to the predetermined height using the wheel lifting apparatus, moving the wheel nut torque checking apparatus using the robot so as to engage the nut runner to the wheel nut, and detecting an engage torque of the wheel nut by rotating the nut runner.
Abstract:
Provided are a system and method for measuring a vehicle gap or step, where a vehicle body to which a hood, a door, and a trunk lid are assembled is seated on a carrier and moved along transfer lines. The system may be installed over the transfer lines and may include one or more door regulating units attached between the vehicle body and the door, upper rails in both sides above a workplace corresponding to the transfer lines, a moving frame movable below the upper rails, a forward/backward moving unit above the moving frame, a horizontal moving unit to move installation frames, a vertical moving unit in the installation frames to reciprocally move a sliding plate upwardly and downwardly, a measurement module movable and rotatable to measure the gap or the step, and an electronic tag on a roof of the vehicle body.
Abstract:
A quality management apparatus includes an acquisition unit and an extraction unit. The acquisition unit acquires, about products to be managed, a rate of occurrence of a malfunction on an occurrence period basis, an operation condition of the products, and a manufacturing condition for the products. The extraction unit classifies the rate of occurrence into layers under the operation condition, and extracts, for each layer under the operation condition, a relationship between the rate of occurrence and the manufacturing condition.
Abstract:
Some embodiments are directed to an indicator assembly for indicating an orientation between a vehicle seat back and a seat bottom. The indicator assembly can include an outer plate assembly that is configured to be supported by the seat bottom, and a movable plate that is movably supported by the outer plate assembly. A biasing device can apply a biasing force to bias the movable plate toward the seat back when the outer plate assembly is supported by the seat bottom to thereby define a projecting portion of the movable plate. The biasing device can enable the movable plate to move upon application of a force to the projecting portion that is greater than the biasing force. An indicator can indicate a relative orientation between the seat back and the seat bottom based on the amount of movement of the movable plate.
Abstract:
An integrated jig for assembling inspection of a door assembly includes a loading module on which a door assembly is held. An alignment module aligns a position of the door assembly to be a reference position and fixes the door assembly to the loading module. A sensor module inspects an assembling state of the door assembly.
Abstract:
In a method for securing a high voltage on-board electric grid of a motor vehicle for repair and/or maintenance of the motor vehicle, the energy inflow of an energy supply unit into the onboard electric grid is blocked during or after a voltage disconnection of the high-voltage on-board electric grid, in which an energy inflow of the energy supply unit to the high-voltage on-board electric grid is interrupted. Additionally or alternatively, the energy inflow of at least one other energy supply device is blocked, wherein the at least one other energy inflow is designed in order to supply energy from a further energy source to the high-voltage on-board electric grid.