OPTICAL PARTICLE SENSOR
    1.
    发明申请

    公开(公告)号:US20200309661A1

    公开(公告)日:2020-10-01

    申请号:US16300594

    申请日:2017-05-17

    Abstract: The invention describes a laser sensor module. The laser sensor module comprises at least a first laser (111) being adapted to emit a first measurement beam (111′) and at least a second laser (112) being adapted to emit a second measurement beam (112′). The laser sensor module further comprises an optical device (150) being arranged to redirect the first measurement beam (111′) and the second measurement beam (112′) such that the 5 first measurement beam (111′) and the second measurement beam enclose an angle between 45° and 135°. The laser sensor module comprises one detector (120) being adapted to determine at least a first self-mixing interference signal of a first optical wave within a first laser cavity of the first laser (111) and at least a second self-mixing interference signal of a second optical wave within a second laser cavity of the second laser (112). This configuration 10 enables determination of an average velocity of the particles despite of the fact that it is not possible to determine the components of the velocity vector. The introduced error by means of statistical variations is acceptable because the number of detected particles scales with the cubic root of the particle velocity. The invention further describes a particle sensor (100) comprising such a laser sensor module, a corresponding method and computer program 15 product. The invention enables a simple and low-cost particle sensor (100) for detecting small particles based on laser self-mixing interference.

    LASER SENSOR FOR ULTRA-FINE PARTICLE SIZE DETECTION

    公开(公告)号:US20200292435A1

    公开(公告)日:2020-09-17

    申请号:US16086046

    申请日:2017-03-21

    Abstract: The invention describes a laser sensor module (100) for detecting ultra-fine particles (10) with a particle size of 300 nm or less, more preferably 200 nm or less, most preferably 100 nm or less, the laser sensor module (100) comprising: —at least one laser (110) being adapted to emit laser light to at least one focus region in reaction to signals provided by at least one electrical driver (130),—at least one detector (120) being adapted to determine a self-mixing interference signal of an optical wave within a laser cavity of the at least one laser (110), wherein the self-mixing interference signal is caused by reflected laser light reentering the laser cavity, the reflected laser light being reflected by a particle receiving at least a part of the laser light,—the laser sensor module (100) being arranged to perform at least one self-mixing interference measurement,—the laser sensor module (100) being adapted to determine a first particle size distribution function with a first sensitivity by means of at least one measurement result determined based on the at least one self-mixing interference measurement, the laser sensor module being further adapted to determine a second particle size distribution function with the second sensitivity, the second sensitivity being different from the first sensitivity,—the at least one evaluator (140) being adapted to determine a particle measure of the particle size of 300 nm or less by subtracting the second particle size distribution function multiplied with a calibration factor q from the first particle size distribution function. The invention further describes a corresponding method and computer program product. The invention enables a simple and low-cost particle detection module or particle detector based on laser self-mixing interference which can detect particles with a size of 100 nm or even less.

    INFRARED LASER ILLUMINATION DEVICE
    4.
    发明申请

    公开(公告)号:US20180038944A1

    公开(公告)日:2018-02-08

    申请号:US15551320

    申请日:2016-02-04

    CPC classification number: G01S7/4815 G01S17/89 H01S5/423

    Abstract: The invention describes an illumination device (100) for illuminating a three dimensional arrangement (250) in an infrared wavelength spectrum. The illumination device (100) comprises at least a first group of laser devices (110) comprising at least one laser device (105) and at least a second group of laser devices (120) comprising at least one laser device (105). The first and the second group of laser devices (110, 120) are adapted to be operated independent with respect to each other. The first group of laser devices (110) is adapted to emit laser light with a first emission characteristic and the second group of laser devices (120) is adapted to emit laser light with a second emission characteristic different from the first emission characteristic. The invention further describes a distance detection device (150) and a camera system (300) comprising such an illumination device (100). The different emission characteristics may be used to compensate or take into account the depth of the three dimensional arrangement (250). Different parts of the three dimensional arrangement (250) may be illuminated by means of the first and second emission characteristic in different ways.

Patent Agency Ranking