Abstract:
A radiation imaging device capable of matter-element information acquisition and image based selection comprises: a radiation source generating radiation; at least one scattering device receiving radiation which includes radiation transmitting a subject and scattered radiation and scattering the received radiation; and an imaging device receiving the radiation which includes the radiation transmitting the subject and the scattered radiation to measure energy and positional information so as to calculate a two-dimensional image.
Abstract:
Disclosed herein is a different radiation measuring sensor and a manufacturing method thereof. The different radiation measuring sensor includes a semiconductor substrate, at least one bottom electrode formed on a bottom surface of the semiconductor, a plurality of top electrodes formed on a top surface of the semiconductor and electrically connected to the bottom electrode, and sensing films formed on the plurality of top electrodes and reacting with different materials.
Abstract:
A PET-MRI device and a manufacturing method thereof are disclosed. The PET device includes a magnetic resonance imaging (MRI) machine comprising a solenoid coil and a magnetic-field correction coil, wherein the MRI machine has a cylindrical structure or a dipole structure; and a positron emission tomography (PET) machine comprising a PET image sensor, wherein PET image sensor electrodes are formed on one and the other ends of the PET image sensor that have a doughnut shape, and the PET machine has a cylindrical structure or a lattice structure, wherein the PET machine is formed in the MRI machine to allow a direction of an electric field of the PET machine to be parallel to a direction of a magnetic field of the MRI machine.
Abstract:
A radiation imaging device capable of matter-element information acquisition and image based selection comprises: a radiation source generating radiation; at least one scattering device receiving radiation which includes radiation transmitting a subject and scattered radiation and scattering the received radiation; and an imaging device receiving the radiation which includes the radiation transmitting the subject and the scattered radiation to measure energy and positional information so as to calculate a two-dimensional image.
Abstract:
A PET-MRI device and a manufacturing method thereof are disclosed. The PET device includes a magnetic resonance imaging (MRI) machine comprising a solenoid coil and a magnetic-field correction coil, wherein the MRI machine has a cylindrical structure or a dipole structure; and a positron emission tomography (PET) machine comprising a PET image sensor, wherein PET image sensor electrodes are formed on one and the other ends of the PET image sensor that have a doughnut shape, and the PET machine has a cylindrical structure or a lattice structure, wherein the PET machine is formed in the MRI machine to allow a direction of an electric field of the PET machine to be parallel to a direction of a magnetic field of the MRI machine.