Abstract:
A dehumidification system including: an exhaust path for exhausting indoor air to the outdoor space; an inlet path for entering outdoor air to the indoor space from the outdoor space; an indoor air bypass path bypassing a part of indoor air to be exhausted to the exhaust path to the inlet path by connecting the exhaust path and the inlet path; an outdoor air bypass path bypassing a part of outdoor air to be flowed to the inlet path to the exhaust path by connecting the inlet path and the exhaust path; and a porous separation membrane filter installed between the indoor air bypass path and the outdoor air bypass path and passing water molecules included in indoor air passing through the indoor air bypass path through the outdoor air bypass path.
Abstract:
In the present invention, a recuperator is used in a refrigerant cycle to make a heat exchange between a refrigerant generated in a condenser and a refrigerant before flowing into a compressor, thereby supercooling the refrigerant to minimize the quality of the refrigerant introduced into an evaporator, elevating temperatures at an inlet and an outlet of the compressor, and increasing condensed heat of the condenser. In the present invention, a recuperator is used to increase condensed heat of the condenser, leading to increasing the heat which circulation water circulating in a steam producing cycle receives from the condenser, whereby steam production efficiency can be improved.
Abstract:
A single-stage compressor including one compressing unit, includes: a housing having a compressing chamber formed therein and including a suction port, which is located in one side of the compressing chamber and into which a working fluid enters, and an injection port, which is located on the compressing chamber to be spaced apart from the suction port by a predetermined distance and into which an intermediate-pressure working fluid is injected; and an intermediate-pressure valve installed on an intermediate-pressure fluid flow path on which the intermediate-pressure working fluid moves and configured to control supply of the intermediate-pressure working fluid so that the intermediate-pressure working fluid is supplied to the injection port in response to an intermediate pressure of the compressing chamber. In the injection-type compressor having a single chamber, a working fluid is injected at an intermediate pressure (not in the proximity of a suction pressure) so that efficiency and capability of the injection-type compressor having a single chamber can be improved. The injection-type compressor having a single chamber has a simple structure and is easily manufactured so that a pressure of an injection port and a corresponding intermediate pressure can be selectively set in various ways.
Abstract:
In a steam turbine power generation system according to the present invention, a regenerator and an ejector are selectively operated according to outdoor air temperature so that the effects of the outdoor air temperature can be minimized and thus an increase in back pressure of a turbine is prevented and thus the operating efficiency of the steam turbine power generation system can be guaranteed. In addition, when the outdoor air temperature is lower than a set temperature, only a steam condenser and an air cooling condenser are used, and when the outdoor air temperature is equal to or higher than the set temperature, the regenerator and the ejector are operated so that the condensation efficiency of the air cooling condenser is improved and thus the cooling efficiency of the steam turbine power generation system can be maximized.
Abstract:
A dehumidification system including: an exhaust path for exhausting indoor air to the outdoor space; an inlet path for entering outdoor air to the indoor space from the outdoor space; an indoor air bypass path bypassing a part of indoor air to be exhausted to the exhaust path to the inlet path by connecting the exhaust path and the inlet path; an outdoor air bypass path bypassing a part of outdoor air to be flowed to the inlet path to the exhaust path by connecting the inlet path and the exhaust path; and a porous separation membrane filter installed between the indoor air bypass path and the outdoor air bypass path and passing water molecules included in indoor air passing through the indoor air bypass path through the outdoor air bypass path.
Abstract:
A supercritical carbon dioxide power generation system is provided. The supercritical carbon dioxide power generation system may include a regenerator, a turbine, a heat recoverer, a condenser, a compressor an expansion valve, a flash tank, a heat exchanger, and an ejector, and may utilize waste heat of the supercritical carbon dioxide power generation system.
Abstract:
In a heat pump system according to the present invention, at least part of a plurality of outdoor heat-exchanging flow paths that pass through an outdoor heat exchanger is alternately selected as a flow path for defrosting and is used, and the other flow path is used as a flow path for evaporation so that defrosting and a heating operation can be simultaneously performed. In addition, the refrigerant in which a defrosting action is performed, while passing through the outdoor heat exchanger, is throttled and then is used for an evaporation action so that the structure of the heat pump system is simple and both heating and defrosting can be performed.
Abstract:
A heat pump system includes a liquid receiver valve that adjusts the amount of a refrigerant stored in a liquid receiver so that a circulation amount of the refrigerant that circulates the heat pump system can be adjusted according to a driving speed of a compressor and performance of the compressor and the heat pump system can be further improved. Also, since a plurality of liquid receiver refrigerant outlets can be selectively opened using a pressure difference between an inlet and an outlet of the compressor, active control can be performed.
Abstract:
In a heat pump system according to the present invention, at least part of a plurality of outdoor heat-exchanging flow paths that pass through an outdoor heat exchanger is alternately selected as a flow path for defrosting and is used, and the other flow path is used as a flow path for evaporation so that defrosting and a heating operation can be simultaneously performed. In addition, the refrigerant in which a defrosting action is performed, while passing through the outdoor heat exchanger, is throttled and then is used for an evaporation action so that the structure of the heat pump system is simple and both heating and defrosting can be performed.
Abstract:
The present invention provides a partial admission operation turbine apparatus comprising: a rotor portion rotatably coupled to a rotary shaft of a turbine and including a plurality of rotor blades; a nozzle portion fixedly coupled to the rotary shaft in front of the rotor portion and guiding and supplying a working fluid to the rotor blades through a plurality of nozzle blades; and an inlet disk coupled to the rotary shaft in front of the nozzle portion in a plate shape and having a plurality of admission holes formed therein so as to supply the working fluid to the nozzle portion to partially admit the working fluid into the nozzle portion, wherein each of the admission holes is formed to have a different passage cross-sectional areas, so that the opening and closing of the admission holes are controlled according to operating flow rate conditions to control a partial admission ratio of the working fluid supplied to the nozzle portion. Due to the aforementioned feature, since continuous partial admission can be operated for a supercritical power generation system, it is possible to resolve the difficulties in designing and manufacturing turbines. Also, since the partial admission ratio can be adjusted according to operating conditions, it is possible to improve the performance of a turbine that is operated by continuous partial admission. Furthermore, even if the operating flow rate conditions change in the same cycle, it is possible to operate the same turbine with high efficiency.