Abstract:
The method for manufacturing a solid electrolyte using an LLZ material for a lithium-ion battery comprises the steps of: providing a starting material in which lanthanum nitrate [La(NO3)3.6H2O] and zirconium nitrate [ZrO(NO3)2.6H2O] are mixed at a mole ratio of 3:2; forming an aqueous solution by dissolving the starting material; forming a precipitate by putting ammonia, which is a complex agent, and sodium hydroxide, which adjusts the pH of a reactor, into the aqueous solution, mixing the same, and then co-precipitating the mixture; forming a primary precursor powder by cleaning, drying and pulverizing the precipitate; forming a secondary precursor powder by mixing lithium powder [LiOH.H2O] with the primary precursor powder and ball-milling the mixture so as to solidify the lithium; and forming a solid electrolyte powder by heat-treating the secondary precursor powder.
Abstract:
The present inventions relates to an organic light emitting device capable of decreasing a leakage current, and more particularly, to an organic light emitting device manufacturing method and an organic light emitting device using the same, which can decrease a leakage current, by flattening a lower electrode in order to decrease a leakage current of the lower electrode deposited through a shadow mask.
Abstract:
The method for manufacturing a solid electrolyte using an LLZ material for a lithium-ion battery comprises the steps of: providing a starting material in which lanthanum nitrate [La(NO3)3.6H2O] and zirconium nitrate [ZrO(NO3)2.6H2O] are mixed at a mole ratio of 3:2; forming an aqueous solution by dissolving the starting material; forming a precipitate by putting ammonia, which is a complex agent, and sodium hydroxide, which adjusts the pH of a reactor, into the aqueous solution, mixing the same, and then co-precipitating the mixture; forming a primary precursor powder by cleaning, drying and pulverizing the precipitate; forming a secondary precursor powder by mixing lithium powder [LiOH.H2O] with the primary precursor powder and ball-milling the mixture so as to solidify the lithium; and forming a solid electrolyte powder by heat-treating the secondary precursor powder.
Abstract:
An electromagnetic wave shielding sheet including a carbon composite fiber and manufactured by electrospinning, and a method of manufacturing the same are disclosed. More particularly, an electromagnetic wave shielding sheet includes a carbon composite fiber having a core-shell structure and a resin, and the core-shell structure includes an outer shell including a carbon fiber, and a core including metal nano particles arranged in a length direction of the carbon fiber in the outer shell. The electromagnetic wave shielding sheet includes metal nano particles as electromagnetic wave shielding materials in a carbon fiber, and the oxidation of a metal may be prevented, conductivity in a length direction of the carbon fiber may be secured, and the sheet may be applied to various industrial fields as an electromagnetic shielding material.