Abstract:
A method of preparing a sintered solid electrolyte includes (a) coprecipitating a mixed solution including a lanthanum precursor, a zirconium precursor, a gallium precursor, a complexing agent, and a pH adjuster to provide a solid electrolyte precursor; (b) washing and drying the solid electrolyte precursor to provide a washed and dried solid electrolyte precursor; (c) mixing the washed and dried solid electrolyte precursor with a lithium source to provide a mixture; (d) calcining the mixture to provide a calcined solid electrolyte, which is a gallium (Ga)-doped lithium lanthanum zirconium oxide (LLZO), as represented by Chemical Formula 1 below, LixLayZrzGawO12, Chemical Formula 1 where 5≤x≤9, 2≤y≤4, 1≤z≤3, and 0
Abstract:
This disclosure synthesizes an anodic composite material Li(LixNiyCozMnwO2+α) of Li2MnO3 series whose theoretical capacity is a level of about 460 mAh/g, and to produce an electrode of a high capacity using the synthesized anodic composite material. Also provided is a method for charging and discharging the electrode. Here, the method for producing an anodic composite material for a lithium secondary battery includes the steps of: mixing a nickel nitrate solution, a manganese nitrate solution, and a cobalt nitrate solution to produce a starting material solution; and mixing the starting material solution with a complexing agent so as to produce an anodic composite material Li(LixNiyCozMnwO2+α) of Li2MnO3 series by means of coprecipitation.
Abstract:
The method for manufacturing a solid electrolyte using an LLZ material for a lithium-ion battery comprises the steps of: providing a starting material in which lanthanum nitrate [La(NO3)3.6H2O] and zirconium nitrate [ZrO(NO3)2.6H2O] are mixed at a mole ratio of 3:2; forming an aqueous solution by dissolving the starting material; forming a precipitate by putting ammonia, which is a complex agent, and sodium hydroxide, which adjusts the pH of a reactor, into the aqueous solution, mixing the same, and then co-precipitating the mixture; forming a primary precursor powder by cleaning, drying and pulverizing the precipitate; forming a secondary precursor powder by mixing lithium powder [LiOH.H2O] with the primary precursor powder and ball-milling the mixture so as to solidify the lithium; and forming a solid electrolyte powder by heat-treating the secondary precursor powder.
Abstract:
The method for manufacturing a solid electrolyte using an LLZ material for a lithium-ion battery comprises the steps of: providing a starting material in which lanthanum nitrate [La(NO3)3.6H2O] and zirconium nitrate [ZrO(NO3)2.6H2O] are mixed at a mole ratio of 3:2; forming an aqueous solution by dissolving the starting material; forming a precipitate by putting ammonia, which is a complex agent, and sodium hydroxide, which adjusts the pH of a reactor, into the aqueous solution, mixing the same, and then co-precipitating the mixture; forming a primary precursor powder by cleaning, drying and pulverizing the precipitate; forming a secondary precursor powder by mixing lithium powder [LiOH.H2O] with the primary precursor powder and ball-milling the mixture so as to solidify the lithium; and forming a solid electrolyte powder by heat-treating the secondary precursor powder.
Abstract:
Disclosed is a method of manufacturing a bipolar plate for a redox flow battery. The method includes (a) mixing epoxy, a curing agent, and a conductive filler to manufacture a mixture, and (b) manufacturing the bipolar plate including a conductive filler composite manufactured by compression-molding the mixture.
Abstract:
Provided are a method for preparing a solid electrolyte material for a cheap solid oxide fuel cell capable of implementing high ion conductivity at a medium-low temperature of 800° C. or lower, and a method for preparing a unit cell of a solid oxide fuel cell by using the same. The method for preparing a solid electrolyte material for a solid oxide fuel cell comprises: providing a starting material comprising ytterbium nitrate [Yb(NO3)3.H2O], scandium nitrate [Sc(NO3)3.H2O] and zirconium oxychloride [ZrOCl2.H2O] in a ratio of 6:4:90 by mol; forming a mixture metal salt aqueous solution by dissolving the starting material; forming a precursor by mixing the mixture metal salt aqueous solution and a chelating agent and coprecipitating the obtained mixture; washing the precursor by providing ultrapure water multiple times; filtering the washed precursor by using a vacuum filtration apparatus; and forming a solid electrolyte powder by heat treating the filtered precursor.
Abstract:
Disclosed is a method of preparing a cathode electrode material for a secondary battery, including a hydrate precursor preparation step of preparing a manganese phosphate hydrate precursor using a coprecipitation process, a synthetic powder preparation step of preparing a synthetic powder by mixing the manganese phosphate hydrate precursor in a powder form with lithium phosphate and carbon, an oxide material powder preparation step of preparing a lithium manganese phosphate oxide material powder by milling and annealing the synthetic powder, a composite powder preparation step of preparing a composite powder by mixing the lithium manganese phosphate oxide material powder with a Li2MnO3-based cathode material, and a slurry preparation step of preparing a slurry by mixing the composite powder with a conductor and a binder.
Abstract:
This disclosure synthesizes an anodic composite material Li(LixNiyCozMnwO2+α) of Li2MnO3 series whose theoretical capacity is a level of about 460 mAh/g, and to produce an electrode of a high capacity using the synthesized anodic composite material. Also provided is a method for charging and discharging the electrode. Here, the method for producing an anodic composite material for a lithium secondary battery includes the steps of: mixing a nickel nitrate solution, a manganese nitrate solution, and a cobalt nitrate solution to produce a starting material solution; and mixing the starting material solution with a complexing agent so as to produce an anodic composite material Li(LixNiyCozMnwO2+α) of Li2MnO3 series by means of coprecipitation.
Abstract translation:本公开内容合成了理论容量为约460mAh / g的Li2MnO3系列的阳极复合材料Li(LixNiyCozMnwO2 +α),并使用合成的阳极复合材料制造高容量的电极。 还提供了一种用于充电和放电电极的方法。 这里,用于制造锂二次电池用阳极复合材料的方法包括以下步骤:将硝酸镍溶液,硝酸锰溶液和硝酸钴溶液混合以制备原料溶液; 并将原料溶液与络合剂混合,通过共沉淀法制备Li2MnO3系列的阳极复合材料Li(Li x Ni y Co z Mn O 2 +α)。