Abstract:
The present invention relates to a photocatalyst using a semiconductor-carbon nanomaterial core-shell composite quantum dot and a method for preparing the same, more particularly to a microparticle in which a semiconductor-carbon nanomaterial core-shell composite quantum dot is self-assembled using 4-aminophenol, capable of improving photoelectrochemical response and photoconversion efficiency when used as a photocatalyst or a photoelectrode of a photoelectrochemical device, a photoelectrochemical device using the same and a method for preparing the same.
Abstract:
Provided is a method for preparing boron nitride nanotubes, the method including: injecting a boron-metal catalyst composite into a reaction chamber; injecting a nitrogen precursor into the reaction chamber; producing a decomposition product of the boron-metal catalyst composite in a gas state by irradiating the boron-metal catalyst composite with a carbon dioxide laser or a free electron laser; and forming boron nitride nanotubes by reacting the decomposition product of the boron-metal catalyst composite in the gas state with the nitrogen precursor.
Abstract:
Disclosed is a method of preparing metal oxide semiconductor-graphene core-shell quantum dots by chemically linking graphenes with superior electrical properties to a metal oxide semiconductor, and a method of fabricating a light emitting diode by using the same. The light emitting diode according to the present invention has the advantages that it shows excellent power conversion efficiency, the cost for materials and equipments required for its fabrication can be reduced, its fabricating process is simple, and it is possible to mass-produce and enlarge the size of display based on a quantum dot light emitting diode. Further, the present invention relates to core-shell quantum dots that can be used in fabricating a light emitting diode with a different wavelength by using various multi-component metal oxide semiconductors and a fabricating method thereof.