摘要:
The present disclosure relates to a preparation method for lowering a production cost of a high performance carbon fiber using a nanocarbon composite carbon fiber precursor fiber crosslinked by electron beam. More particularly, the present disclosure relates to a preparation method of a nanocarbon composite carbon fiber, including a nanocarbon containing step for containing nanocarbon in a structure of a carbon fiber precursor fiber, a nanocarbon composite carbon fiber precursor fiber preparation step for forming a composite of the nanocarbon and the carbon fiber precursor fiber by electron beam irradiation to enable crosslinking for improved heat resistance of the carbon fiber precursor fiber containing the nanocarbon, an oxidation•stabilization step for oxidizing•stabilizing the nanocarbon composite carbon fiber precursor fiber, and a carbonization step for carbonizing the oxidized•stabilized nanocarbon composite carbon fiber precursor fiber, and a nanocarbon composite carbon fiber prepared by the preparation method.
摘要:
The present disclosure relates to a polymer-based large-area carbon nanomesh and a method for preparing same. More particularly, the present disclosure provides a method for preparing a carbon nanomesh, including: preparing a polymer nanofilm by coating a solution of a block copolymer or a polymer mixture thereof on a substrate; stabilizing the polymer nanofilm by annealing such that the polymer nanofilm is phase-separated, a pore-forming polymer is removed and, at the same time, a nanomesh-forming polymer forms a stabilized porous polymer nanomesh; and carbonizing the stabilized porous polymer nanomesh by annealing at high temperature to prepare a carbon nanomesh. Using phase separation and cyclization of a polymer, a large-area carbon nanomesh with superior activity can be prepared simply with high reproducibility in large scale.
摘要:
The present disclosure relates to a preparation method for lowering a production cost of a high performance carbon fiber using a nanocarbon composite carbon fiber precursor fiber crosslinked by electron beam. More particularly, the present disclosure relates to a preparation method of a nanocarbon composite carbon fiber, including a nanocarbon containing step for containing nanocarbon in a structure of a carbon fiber precursor fiber, a nanocarbon composite carbon fiber precursor fiber preparation step for forming a composite of the nanocarbon and the carbon fiber precursor fiber by electron beam irradiation to enable crosslinking for improved heat resistance of the carbon fiber precursor fiber containing the nanocarbon, an oxidation⋅stabilization step for oxidizing⋅stabilizing the nanocarbon composite carbon fiber precursor fiber, and a carbonization step for carbonizing the oxidized⋅stabilized nanocarbon composite carbon fiber precursor fiber, and a nanocarbon composite carbon fiber prepared by the preparation method.
摘要:
Provided is a method for preparing a carbon material based on an organic nanofilm using thermal evaporation, including: depositing a liquid polymer or polymer solution containing a polymer and a solvent onto a substrate, thereby forming an organic nanofilm; stabilizing the organic nanofilm so that the carbon atoms in the organic nanofilm have a cyclic arrangement; and carbonizing the stabilized organic nanofilm, thereby forming a carbon material, wherein the organic nanofilm is formed from the liquid polymer or polymer solution through a thermal evaporation process. The method provides a carbon material with a thickness, sheet resistance and surface roughness suitable for various applications and allows control thereof. In addition, the method uses a relatively inexpensive starting material, pitch, thereby reducing the overall production cost, and avoids a need for a complicated additional patterning operation, so that the carbon material is applied directly to electronic devices.