Abstract:
Provided are a method for preparing a carbon material using a polyolefin-based plastic, which includes a step of dissolving a polyolefin-based plastic in a solvent and then precipitating to obtain a polyolefin-based polymer having, for example, a powder or film shape, a step of crosslinking and cyclizing the precipitated polyolefin-based polymer to stabilize the polyolefin-based polymer and to cleave linear bonding of the polyolefin-based polymer, and a step of carbonizing the stabilized polyolefin-based polymer and a carbon material prepared according to this method. According to this method, it is possible to convert polyolefin-based plastics, particularly polyolefin-based waste plastics, into high-quality carbon materials having high heat-generating properties and a high electrical conductivity by a simple and efficient process.
Abstract:
Provided are a composite electric wire structure wherein a carbon material island structure is formed on a surface of a metal wire and a method for manufacturing the same. The carbon material/metal composite electric wire is capable of solving stability problem and preventing a decrease in electrical properties, mechanical properties, etc. In addition, the composite electric wire structure may be produced in commercially viable large scale.
Abstract:
Provided is a method for preparing a carbon material based on an organic nanofilm using thermal evaporation, including: depositing a liquid polymer or polymer solution containing a polymer and a solvent onto a substrate, thereby forming an organic nanofilm; stabilizing the organic nanofilm so that the carbon atoms in the organic nanofilm have a cyclic arrangement; and carbonizing the stabilized organic nanofilm, thereby forming a carbon material, wherein the organic nanofilm is formed from the liquid polymer or polymer solution through a thermal evaporation process. The method provides a carbon material with a thickness, sheet resistance and surface roughness suitable for various applications and allows control thereof. In addition, the method uses a relatively inexpensive starting material, pitch, thereby reducing the overall production cost, and avoids a need for a complicated additional patterning operation, so that the carbon material is applied directly to electronic devices.
Abstract:
Provided is a carbon nanostructure including a plurality of organic molecules that are decomposition products of an organic solvent. The carbon nanostructure includes a carbon nanostructure core and a plurality of organic molecules bound to and grown on the carbon nanostructure core, wherein the carbon nanostructure core is a combination of the organic molecules.
Abstract:
The present disclosure relates to a polymer-based large-area carbon nanomesh and a method for preparing same. More particularly, the present disclosure provides a method for preparing a carbon nanomesh, including: preparing a polymer nanofilm by coating a solution of a block copolymer or a polymer mixture thereof on a substrate; stabilizing the polymer nanofilm by annealing such that the polymer nanofilm is phase-separated, a pore-forming polymer is removed and, at the same time, a nanomesh-forming polymer forms a stabilized porous polymer nanomesh; and carbonizing the stabilized porous polymer nanomesh by annealing at high temperature to prepare a carbon nanomesh. Using phase separation and cyclization of a polymer, a large-area carbon nanomesh with superior activity can be prepared simply with high reproducibility in large scale.