Abstract:
A method for detecting biomaterial by means of a dye having a linear upconversion fluorescent property is provided. The method includes the steps of: i) preparing a fluorophore having a linear upconversion fluorescent property; ii) reacting the fluorophore and biomaterial to obtain a reaction complex thereof; iii) exciting the reaction complex by means of a light source having a longer wavelength than the maximum light-emitting wavelength of the fluorophore; and iv) detecting and measuring the light-emitting signal having a shorter wavelength than the wavelength of the excited light emitted from the excited reaction complex. A system and a kit for detecting biomaterial using a dye having a linear upconversion fluorescent property are also provided.
Abstract:
The present invention relates to near-infrared-absorbing dye-based composite particles which exhibit a photothermal effect and/or photoacoustic signal upon photoirradiation, a preparation method thereof, and a use thereof. The near-infrared-absorbing composite particles comprise: a water-insoluble salt of a near-infrared-absorbing dye, which comprises anions of the near-infrared-absorbing dye and metal cations capable of forming a precipitation product with the anions of the near-infrared-absorbing dye; and particles of a polymeric surfactant, in which a water-insoluble salt of the near-infrared-absorbing dye is supported in the hydrophobic part of the polymeric surfactant.
Abstract:
A method for detecting biomaterial by means of a dye having a linear upconversion fluorescent property is provided. The method includes the steps of: i) preparing a fluorophore having a linear upconversion fluorescent property; ii) reacting the fluorophore and biomaterial to obtain a reaction complex thereof; iii) exciting the reaction complex by means of a light source having a longer wavelength than the maximum light-emitting wavelength of the fluorophore; and iv) detecting and measuring the light-emitting signal having a shorter wavelength than the wavelength of the excited light emitted from the excited reaction complex. A system and a kit for detecting biomaterial using a dye having a linear upconversion fluorescent property are also provided.
Abstract:
The present invention relates to a nanocomposite for detecting hydrogen sulfide; a method for preparing the same; a novel reactive fluorogenic compound to be used in the method; a kit for detecting hydrogen sulfide comprising the nanocomposite; and a method for providing information for the diagnosis of a disease, which causes abnormal secretion of hydrogen sulfide, by using the nanocomposite.
Abstract:
The present invention relates to a drug delivery system (DDS) for crossing the blood-brain barrier (BBB) formed by self-assembly of an amphiphilic block copolymer, comprising a self-assembled structure having an average diameter of 5 nm to 20 nm of a core-shell structure comprising a hydrophobic core and a hydrophilic shell; and a hydrophobic drug supported in the hydrophobic core of the self-assembled structure, a pharmaceutical composition for preventing or treating cerebral diseases comprising the drug delivery system as an active ingredient, and a preparation method of the drug delivery system.
Abstract:
The present invention relates to a methylene blue nanoparticle for bioimaging and photodynamic therapy, and a use thereof as a cancer therapeutic agent and a contrast agent. The methylene blue nanoparticle of the present invention for use as a topical cancer targeting photo therapeutic agent is composed of only a material of which the composition is clinically used or derived from human bodies, and thus a nanopreparation in which a barrier to clinical entry is low and the possibility of commercialization is very high, exhibits near-infrared fluorescence along with cancer targeting property, capacity of generating singlet oxygen and the like, and thus may be used for both bioimaging diagnosis such as optical imaging, and cancer targeting photodynamic therapy.