Abstract:
Provided is a method for preparing nickel-aluminum alloy powder at low temperature, which is simple and economical and is capable of solving the reactor corrosion problem. The method for preparing nickel-aluminum alloy powder at low temperature includes: preparing a powder mixture by mixing nickel powder and aluminum powder in a reactor and adding aluminum chloride into the reactor (S1); vacuumizing the inside of the reactor and sealing the reactor (S2); and preparing nickel-aluminum alloy powder by heat-treating the powder mixture in the sealed reactor at low temperature (S3).
Abstract:
Provided are: a dry reforming catalyst, in which a noble metal (M) is doped in a nickel yttria stabilized zirconia complex (Ni/YSZ) and an alloy (M-Ni alloy) of the noble metal (M) and nickel is formed at Ni sites on a surface of the nickel yttria stabilized zircona (YSZ); a method for producing the dry reforming catalyst using the noble metal/glucose; and a method for performing dry reforming using the catalyst. The present invention can exhibit a significantly higher dry reforming activity as compared with Ni/YSZ catalysts. Furthermore, the present invention can have an improved long-term performance by suppressing or preventing the deterioration. Furthermore, the preparing method is useful in performing the alloying of noble metal with Ni at Ni sites on the Ni/YSZ surface and can simplify the preparing process, and thus is suitable in mass production.
Abstract:
Provided is a method for preparing nickel-aluminum alloy powder at low temperature, which is simple and economical and is capable of solving the reactor corrosion problem. The method for preparing nickel-aluminum alloy powder at low temperature includes: preparing a powder mixture by mixing nickel powder and aluminum powder in a reactor and adding aluminum chloride into the reactor (S1); vacuumizing the inside of the reactor and sealing the reactor (S2); and preparing nickel-aluminum alloy powder by heat-treating the powder mixture in the sealed reactor at low temperature (S3).
Abstract:
According to one embodiment of the present invention, there is provided a hydrogen extraction reactor, comprising a chamber including an inner space; a reaction unit which is provided to pass through the inside of the chamber and where an endothermic reaction for hydrogen extraction occurs; a heating unit which is provided to be spaced apart from the reaction unit inside the chamber and transfers heat to the inside of the chamber; and a heat transfer material which is provided between the reaction unit and the heating unit in the chamber, wherein the heat transfer material undergoes a phase transition between a gas phase and a liquid phase according to the entry and exit of heat from the heating unit or the reaction unit.