Organic electroluminescent device and manufacturing method thereof

    公开(公告)号:US11158821B2

    公开(公告)日:2021-10-26

    申请号:US16317491

    申请日:2019-01-11

    摘要: The present application provides an organic electroluminescent device and a manufacturing method thereof. A host material of a light-emitting layer of the organic electroluminescent device is co-evaporated by a donor host material and a acceptor host material in a same evaporation source to form an exciplex, which solves the technical problems such as low luminous efficiency, short service life or complicated operation process of the organic electroluminescent device in the prior art. The organic electroluminescent device according to the present application includes an anode, a cathode and a light-emitting layer disposed between the anode and the cathode, a host material of the light-emitting layer is formed by premixing a donor host material and a acceptor host material, the donor host material and the acceptor host material are co-evaporated in a same evaporation source to form an exciplex, and the host material is doped with a guest material.

    Electrode and organic electroluminescent device using same

    公开(公告)号:US10957872B2

    公开(公告)日:2021-03-23

    申请号:US16307070

    申请日:2018-01-05

    IPC分类号: H01L51/52 H01L51/00 H01L51/50

    摘要: An electrode and an organic electroluminescent device using the same are provided. The electrode comprises a first conductive layer (1), a second conductive layer (2) and a third conductive layer (3) that are arranged in a stacked manner The second conductive layer (2) has a single-layer structure or multi-layer composite structure formed by at least one of alkali earth metal, alkali earth metal alloy and alkali earth metal compound, and the third layer (3) has a work function of less than 3 eV. The respective conductive layers of the electrode can compensate with respect to the defects in one another, thereby making the performance of the electrode more stable. In the meantime, because the work function of the third conductive layer (3) is less than 3 eV, the barrier of organics-metal interface can be effectively reduced for guiding the electron injection, thereby increasing the light-emitting efficiency of device. Also, because the electrode has relatively good transmittance, it can be used as a transparent electrode.

    Electrode and Organic Electroluminescent Device Using Same

    公开(公告)号:US20190148666A1

    公开(公告)日:2019-05-16

    申请号:US16307070

    申请日:2018-01-05

    IPC分类号: H01L51/52 H01L51/00

    摘要: An electrode and an organic electroluminescent device using the same are provided. The electrode comprises a first conductive layer (1), a second conductive layer (2) and a third conductive layer (3) that are arranged in a stacked manner The second conductive layer (2) has a single-layer structure or multi-layer composite structure formed by at least one of alkali earth metal, alkali earth metal alloy and alkali earth metal compound, and the third layer (3) has a work function of less than 3 eV. The respective conductive layers of the electrode can compensate with respect to the defects in one another, thereby making the performance of the electrode more stable. In the meantime, because the work function of the third conductive layer (3) is less than 3 eV, the barrier of organics-metal interface can be effectively reduced for guiding the electron injection, thereby increasing the light-emitting efficiency of device. Also, because the electrode has relatively good transmittance, it can be used as a transparent electrode.

    Organic electroluminescent and preparation method thereof

    公开(公告)号:US10038149B2

    公开(公告)日:2018-07-31

    申请号:US15109406

    申请日:2014-12-29

    摘要: Disclosed are an organic electroluminescent device and a preparation method thereof. The organic electroluminescent device comprises an anode, a hole transport layer, an organic light-emitting layer, an electron transport layer and a cathode. An organic metal complex and an active metal compound are doped in the electron transport layer, wherein the active metal compound is an alkali metal complex, an alkali earth metal complex or a lanthanide metal compound. The preparation method thereof includes the following steps: etching an anode pattern, and evaporating a hole transport layer and an organic light-emitting layer on an ITO glass substrate in order; and co-evaporate an electron transport material, an organic metal complex and an active metal compound to form an electron transport layer; and evaporating a cathode on the electron transport layer.