Abstract:
A liquid ejection apparatus includes a nozzle, a pressure chamber, a piezoelectric element, an acquisition processing portion, and a restriction processing portion. The nozzle ejects a liquid. The pressure chamber communicates with the nozzle and contains the liquid. The piezoelectric element changes a pressure in the pressure chamber in response to an input of a drive signal. When image formation processing for ejecting the liquid from the nozzle is executed based on image data, the acquisition processing portion acquires a length of a non-ejection period in which the liquid is not ejected from the nozzle, the non-ejection period being included in an execution period of the image formation processing. When the length of the non-ejection period acquired by the acquisition processing portion is less than a predetermined first threshold value, the restriction processing portion restricts abnormality detection processing for detecting an abnormality of the nozzle using the piezoelectric element.
Abstract:
A fixing device includes: a sensor circuit portion which includes a plurality of series circuits of thermistors and capacitors and in which the capacitors differ from each other in capacitance; a signal circuit portion to which each sensor output voltage that is a voltage between the thermistor and the capacitor is input and which switches between output levels each time the sensor output voltage that exceeds a threshold value is increased; and a processing circuit that includes a output port to which the series circuits are connected so as to be parallel to each other and an input port and that recognizes a target temperature to be detected with each of the thermistors based on a rising time since the start of the voltage application to each of the series circuits until the output signal rises and a falling time until the output signal falls that are measured.
Abstract:
A liquid ejection apparatus includes a nozzle, a pressure chamber, a piezoelectric element, an output processing portion, and a determination processing portion. The nozzle ejects a liquid. The pressure chamber communicates with the nozzle and contains the liquid. The piezoelectric element changes a pressure in the pressure chamber in response to an input of a drive signal. The output processing portion causes the piezoelectric element to output a first electric signal corresponding to vibration generated in the pressure chamber in response to the input of the drive signal to the piezoelectric element. The determination processing portion determines whether or not the pressure chamber is in a filled state in which the pressure chamber is filled with the liquid, based on a frequency of the first electric signal output by the output processing portion.
Abstract:
An electronic apparatus includes a DRAM; an integrated circuit that includes a memory controller for the DRAM, a power-supply control circuit that controls a power-supply voltage of the DRAM or the integrated circuit, and a setting processing unit. Further, the setting processing unit determines an aperture width of an eye pattern of a signal between the DRAM and the memory controller, determines an aperture-width difference between the determined aperture width and a predetermined lowermost aperture width at one of end sides of the lowermost aperture width and an aperture-width difference between the determined aperture width and the lowermost aperture width at the other of the end sides of the lowermost aperture width, and decreases and determines the voltage value in accordance with the smaller one among the aperture-width differences.
Abstract:
Provided is an image forming apparatus capable of accurately returning a carriage to a home position without having to turn ON a light source in the process of returning the carriage to the home position. A first reading-position-detection plate is arranged inside of a reading width of a line sensor and outside of a document-image-reading width. A second color region has a length that gradually increases in the main scanning direction as going away from the home position of the carriage. A reading-position-detecting unit detects the length in the main scanning direction of the second color region on the basis of output from the line sensor. A movement-distance-converting unit converts this length to a movement distance to the home position. A movement-control unit causes the carriage to move toward the home position just the movement distance.
Abstract:
A signal generation device includes a first signal generation portion and a second signal generation portion. The first signal generation portion, based on a reference signal that includes a plurality of rectangular single-wave signals, generates an original common signal in which the rise times of the two or more of the single-wave signals are extended so that they are different from each other, and the fall timing of one or more of the single-wave signals is shifted. The second signal generating portion generates a drive signal to be input to a piezoelectric element by extracting a rising edge of any one of the single-wave signals, the rise time of which is extended, from the original common signal amplified by the amplifying portion, maintaining a signal level changed by extracting the rising edge of the single-wave signal, and extracting a falling edge of a single-wave signal after the single-wave signal.
Abstract:
A liquid ejection apparatus includes a nozzle, a pressure chamber, a piezoelectric element, a count processing portion, and a detection processing portion. The nozzle ejects a liquid. The pressure chamber communicates with the nozzle and contains the liquid. The piezoelectric element changes a pressure in the pressure chamber in response to an input of a drive signal. The count processing portion counts a number of times that an electric signal output from the piezoelectric element and corresponding to vibration generated in the pressure chamber in response to the input of the drive signal to the piezoelectric element exceeds a predetermined threshold value. The detection processing portion detects a viscosity of the liquid contained in the pressure chamber, based on a count result of the count processing portion.