Abstract:
A liquid ejection apparatus includes a nozzle, a pressure chamber, a piezoelectric element, an acquisition processing portion, and a restriction processing portion. The nozzle ejects a liquid. The pressure chamber communicates with the nozzle and contains the liquid. The piezoelectric element changes a pressure in the pressure chamber in response to an input of a drive signal. When image formation processing for ejecting the liquid from the nozzle is executed based on image data, the acquisition processing portion acquires a length of a non-ejection period in which the liquid is not ejected from the nozzle, the non-ejection period being included in an execution period of the image formation processing. When the length of the non-ejection period acquired by the acquisition processing portion is less than a predetermined first threshold value, the restriction processing portion restricts abnormality detection processing for detecting an abnormality of the nozzle using the piezoelectric element.
Abstract:
In an image forming apparatus, a driving mechanism rotates a bottle attached to a bottle attaching portion by engaging with a first end of the bottle. A cover member, positioned to face a second end of the bottle, is supported to be able to open and close an opening from which the bottle is inserted. An elastic member applies upwards elastic force to the bottle attaching portion. A level sensor detects a position of the bottle attaching portion in an up-down direction. A signal processing device executes a full-state notifying process when a detection signal of the level sensor during operation of the driving mechanism fails to satisfy an abnormality condition, and the position indicated by the detection signal is lower than a predetermined reference position. The abnormality condition includes either or both of an amplitude condition and a cycle condition for a rotation cycle of the bottle.
Abstract:
An image reading device includes an image reading section, an image processing section, and a density reference member. Based on a location of a defect in the image reading section or in the density reference member, the image processing section determines whether or not to at least partially restrict either a read range of the image reading section when the image reading section reads an original document or usage of a result obtained by reading the original document by the image reading section. The image processing section determines whether or not to apply a smoothing process to each density value detected by reading the original document by the image reading section. The determination is made based on a comparison between a normal-value determining threshold and each density value detected by reading the density reference member by the image reading section.
Abstract:
An information processing apparatus according to one aspect of the present disclosure includes a communication control portion, an error code storage portion, an acquiring portion, and a determination portion. Communication control portion communicates with storage device based on interface communication standard, to perform data transfer therewith. Error code storage portion stores one or a plurality of selected error codes selected from a plurality of error codes defined by interface communication standard. Acquiring portion acquires error information outputted from storage device. Determination portion determines whether or not error code indicated by error information coincides with selected error code. When determination portion determines that error code coincides with selected error code, communication control portion communicates again with storage device to perform data transfer therewith. When determination portion determines that error code does not coincide with selected error code, communication control portion executes error processing corresponding to error code indicated by error information.
Abstract:
A liquid ejection apparatus includes a nozzle, a pressure chamber, a piezoelectric element, an output processing portion, and a determination processing portion. The nozzle ejects a liquid. The pressure chamber communicates with the nozzle and contains the liquid. The piezoelectric element changes a pressure in the pressure chamber in response to an input of a drive signal. The output processing portion causes the piezoelectric element to output a first electric signal corresponding to vibration generated in the pressure chamber in response to the input of the drive signal to the piezoelectric element. The determination processing portion determines whether or not the pressure chamber is in a filled state in which the pressure chamber is filled with the liquid, based on a frequency of the first electric signal output by the output processing portion.
Abstract:
An image reading device includes first carriage, a stepper motor, a shakiness level calculating section, and a timing adjusting section. The first carriage reads an image of a document to be read loaded on a document table. The stepper motor moves the first carriage relative to the document. The shakiness level calculating section calculates a shakiness level of the image, indicating shakiness of the image during reading by the first carriage, based on image data read by the first carriage with respect to a reference image incorporated into the document table. The timing adjusting section adjusts a rise timing of a step signal input to the stepper motor in accordance with the shakiness level that is calculated.
Abstract:
A developing device includes a storage portion storing a developer, a conveying portion stirring and conveying the developer in the storage portion, a sensor, an acquisition processing portion, and a correction processing portion. The sensor outputs an electrical signal in accordance with magnetic permeability at a predetermined detection position in a conveyance path of the developer. The acquisition processing portion acquires a specific value based on the electrical signal outputted during a rotation period of the conveying portion. The correction processing portion corrects the specific value based on a rotation speed of the conveying portion when a fluctuation width of the electrical signal outputted during the rotation period of the conveying portion is less than a predetermined threshold, and corrects the specific value based on the rotation speed of the conveying portion and the fluctuation width when the fluctuation width is equal to or greater than the threshold.
Abstract:
Plural sensors are arranged respectively for plural toner colors, and oscillate to generate and output detection signals with frequencies corresponding to toner densities using oscillator circuits. An analog switch selects one detection signal among the detection signals. A filter decreases amplitude of the selected detection signal. A first signal line transmits the detection signal with the decreased amplitude. A comparator compares the transmitted detection signal with a predetermined threshold value and outputs as the detection signal a signal of which a level is set as a high level or a low level in accordance with the comparison result, and thereby increases amplitude of the detection signal. A receiver-side IC receives the detection signal with the increased amplitude at a predetermined port, determines a frequency of the received detection signal, and determines the toner density on the basis of the determined frequency.
Abstract:
A signal generation device includes a first signal generation portion and a second signal generation portion. The first signal generation portion, based on a reference signal that includes a plurality of rectangular single-wave signals, generates an original common signal in which the rise times of the two or more of the single-wave signals are extended so that they are different from each other, and the fall timing of one or more of the single-wave signals is shifted. The second signal generating portion generates a drive signal to be input to a piezoelectric element by extracting a rising edge of any one of the single-wave signals, the rise time of which is extended, from the original common signal amplified by the amplifying portion, maintaining a signal level changed by extracting the rising edge of the single-wave signal, and extracting a falling edge of a single-wave signal after the single-wave signal.
Abstract:
A liquid ejection apparatus includes a nozzle, a pressure chamber, a piezoelectric element, a count processing portion, and a detection processing portion. The nozzle ejects a liquid. The pressure chamber communicates with the nozzle and contains the liquid. The piezoelectric element changes a pressure in the pressure chamber in response to an input of a drive signal. The count processing portion counts a number of times that an electric signal output from the piezoelectric element and corresponding to vibration generated in the pressure chamber in response to the input of the drive signal to the piezoelectric element exceeds a predetermined threshold value. The detection processing portion detects a viscosity of the liquid contained in the pressure chamber, based on a count result of the count processing portion.