Abstract:
A method for manufacturing an additively-manufactured object includes a depositing planning step of creating a depositing plan and a building step of repeatedly depositing the weld beads based on the depositing plan. The building step includes a frame portion building step of building a frame portion and an internal building step of building an internal building portion. The internal building step includes a pre-measurement process of measuring a shape of a base on which the weld bead layer is to be deposited, a deviation amount calculation process of creating a measured profile of the base based on the measured shape of the base, determining a planned profile of the base based on the depositing plan, and calculating a deviation amount of the measured profile with respect to the planned profile, and a pre-correction process of correcting a welding condition of the weld beads.
Abstract:
This multi-joint link mechanism has a driving joint driven by a driving source and a follower joint driven by the movement of the driving joint. First, an open-loop link mechanism that allows the position and pose of a workpiece to be varied is selected from a multi-joint link mechanism. The amount of movement/rotation of each of the joints constituting the selected open-loop link mechanism is derived. The derived amounts of movement/rotation of each of the joints of the open-loop link mechanism are set as fixed values to derive the amount of movement/rotation of each of the joints of a closed-loop link mechanism composed of non-selected joints and at least some of the joints of the open-loop link mechanism.
Abstract:
A welding condition generating method in flat position welding is a method for determining welding conditions for welding in a single V groove, a single bevel groove, or a fillet groove in a flat position using a welding robot. The method includes preparing conditions A and B, each including a plurality of different parameters used in calculation for determining the welding conditions; and generating the welding conditions by combining parameters included in the conditions A and B. The condition A includes at least one of the following parameters: a joint shape, a groove shape, a groove angle, a gap width, and the presence or absence of backing. The condition B includes at least one of the following parameters: a welding gas type, a welding wire diameter, a welding wire type, a welding wire extension length, a welding source type, a power source characteristic, and a torch type.
Abstract:
A welding parameter derivation device of a welding machine having a torch and a weaving mechanism derives welding parameters in accordance with the cross-sectional shape of a weld portion of a new base metal. A database stores welding parameter data, and a welding parameter computation unit computes welding parameters for the shape of a groove or joint of a new base metal. Based on past welding parameter data for a shape similar to that of a groove or joint of a new base metal, and input data pertaining to the specifications of the welding machine, the computation unit derives welding parameter data for the new base metal, taking into account a parameter of the cross-sectional area of the weld portion formed on the new base metal, the bead height of the weld portion, the quantity of heat inputted to the new base metal, and a torch weaving parameter.
Abstract:
Reduced workload on a user can be achieved when a sensing-related teaching program is to be generated. A method for generating a teaching program that defines sensing operation includes a setting step for setting a sensing position at a surface of a workpiece, and a generating step for generating a teaching program of the sensing operation based on the sensing position set in the setting step. The sensing position is set within a range in which a maximum permissible amount for an error of the workpiece and a permissible range preliminarily defined with respect to a direction of the error are included in the surface.
Abstract:
The shape profile of an existing weld bead is measured by a non-contact type shape sensor provided integrally with a welding torch on a robot tip end shaft, midway through molding of a laminate molded object on the basis of a lamination trajectory plan. First geometric information relating to the bead shape is extracted from the shape profile and the target position of the welding torch, second geometric information corresponding to the first geometric information is extracted from the deposition track plan, and an offset amount is calculated from the first geometric information and the second geometric information. In accordance with the offset amount, the deposition track plan is updated by updating at least one of the bead height and the bead width of the weld bead determined by the deposition track plan, and the welding conditions are updated in accordance with the update result of the deposition track plan.
Abstract:
When setting welding conditions of arc welding, an operator sets the shape of a material to be welded, the specifications of welding, and welding conditions using a teach pendant. An apparatus for supporting setting of welding conditions in multi-pass welding of the present invention automatically calculates the state of the bead layering cross-section including at least one of the number of bead layers, the number of passes, and the layering direction, and the state of the bead layering cross-section including at least one of the number of bead layers, the number of passes, and the layering direction, obtained by the calculation is displayed on a display section.
Abstract:
In preparing a built-up object by depositing beads, in a step of dividing into the bead model, a trapezoidal bead model a cross section of which is a trapezoidal shape is applied to a position where the bead is formed in a portion not adjacent to an existing bead, and a parallelogram bead model a cross section of which is a parallelogram is applied to a position where the bead is formed adjacent to a bead that is already formed, in the parallelogram bead model opposite sides in the deposition direction of the bead being parallel to each other, and opposite sides in the bead arrangement direction being parallel to a side of another bead mode that is adjacent.
Abstract:
A building time for building an additively-manufactured object is calculated on the basis of the inter-pass time and the welding pass time and is compared with a preset upper limit value, and welding conditions in a depositing plan are repeatedly modified until the building time is equal to or less than the upper limit value. Alternatively, corrections are repeatedly performed until the shape difference between a building shape of built-up object shape data relating to the additively-manufactured object created on the basis of the inter-pass time and the inter-pass temperature, and a building shape of three-dimensional shape data, is smaller than a near net value.
Abstract:
A method for manufacturing an additively-manufactured object, in which a plurality of weld beads obtained by melting and solidifying a filler metal are deposited on a base portion to build a built-up object, includes: a support bead forming step of forming a support bead on the base portion; and a depositing step of depositing a weld bead on the support bead. When the support bead is formed to be inclined from a vertical direction in the support bead forming step, a ratio H/W of a height H to a width W of the support bead is set to 0.35 or more.