摘要:
An X-ray CT apparatus according to an embodiment includes a detector, counted result collecting circuitry, count rate calculating circuitry, control circuitry, and image reconstruction circuitry. The detector includes a plurality of detection elements including a plurality of types of detection elements with different response characteristics to an X-ray dose, and outputs a detection signal according to an incidence of an X-ray photon to each of the detection elements. The counted result collecting circuitry collects counted results obtained by counting X-ray photons from detection signals output by the detection elements. The count rate calculating circuitry calculates a count rate from the detection signals output by the detection elements. The control circuitry selects a detection element based on the count rate and respective response characteristics of the detection elements. The image reconstruction circuitry reconstructs X-ray CT image data using the counted result obtained from the detection element selected by the control circuitry.
摘要:
An X-ray computed tomography apparatus according to an embodiment stores a plurality of reference count data indicative of energy spectra of X-rays, which are associated with a plurality of tube voltages or tube currents. Estimation circuitry estimates a tube voltage or a tube current at a time of X-ray irradiation, based on a comparison of energy spectra between second count data and each of the plurality of reference count data. Correction circuitry corrects first count data acquired together with the second count data, by using an energy spectrum calculated based on the estimated tube voltage or tube current. Reconstruction circuitry reconstructs medical image data, based on the corrected first count data.
摘要:
An X-ray CT apparatus according to an embodiment includes acquiring circuitry and processing circuitry. The acquiring circuitry is configured to count photons derived from X-rays that have passed through a subject and to acquire a result obtained by discriminating energy levels of the counted photons as a counting result. The processing circuitry is configured to notify the acquiring circuitry of an energy dividing set that is set in accordance with an X-ray absorption characteristic of a substance designated by an operator, to receive the counting result acquired by the acquiring circuitry by allocating a counted value to each of a plurality of energy discrimination regions that are set in the energy dividing set, and to reconstruct image data by using the received counting result.
摘要:
According to an embodiment, an X-ray computed tomography apparatus includes processing circuitry. The processing circuitry is configured to acquire first projection data that is based on a first spectrum representing an amount of radioactive rays in a unit of energy of the radioactive rays having passed through a subject and detected by a detector. The processing circuitry is configured to generate second projection data by correcting the first projection data based on a response characteristic of the detector. The processing circuitry is configured to operate reconstruction process to the second projection data.
摘要:
An X-ray computed-tomography (CT) apparatus of an embodiment includes an X-ray tube, an X-ray detector, and processing circuitry. The X-ray tube is configured to generate an X-ray. The X-ray detector includes a plurality of X-ray detection elements configured to output a signal based on the X-ray entered therein. The processing circuitry is configured to derive a constraint condition by using at least one piece of projection data out of a plurality of pieces of projection data corresponding energy bins of which differ at least partially, calculate an effective length that is a total length for which the X-ray has passed through a region in which a material to be decomposed is present, and generate image data showing information about the material by using the projection data and the effective length.
摘要:
According to one embodiment, there is provided an X-ray CT apparatus which comprises high voltage generation processing circuitry configured to selectively generate a first voltage and a second voltage higher than the first tube voltage; a first filter formed from a material having substantially the same atomic number as that of a contrast material to be administered to an object and configured to perform radiation quality adjustment; a second filter formed from a material different from the contrast material and configured to perform radiation quality adjustment; a filter switching mechanism configured to switch between the first filter and the second filter to be interposed between a X-ray tube and the object; and control processing circuitry configured to control the high voltage generation unit and the filter switching mechanism to synchronize switching between the first voltage and the second voltage with switching between the first filter and the second filter.
摘要:
An X-ray CT apparatus includes: intensity distribution data acquiring circuitry is configured to acquire, by performing a first scan, intensity distribution data of X-rays being radiated from an X-ray tube and having passed through a subject; scan controlling circuitry is configured to estimate an X-ray dose with which it is possible to discriminate individual X-ray photons having passed through the subject based on the intensity distribution data and to cause a second scan that is for a photon counting CT purpose to be performed by causing the estimated dose of X-rays to be radiated from the X-ray tube to the subject; a counting result acquiring circuitry is configured to acquire, by the second scan, a counting result by counting the X-ray photons being radiated from the X-ray tube and having passed through the subject; and an image reconstructing circuitry is configured to reconstruct X-ray CT image data based on the counting result.
摘要:
An X-ray computed tomography (CT) apparatus according to an embodiment includes a photon-counting detector, correction circuitry, and reconstruction circuitry. The photon-counting detector includes a plurality of X-ray detection elements detecting X-ray photons applied from an X-ray tube. The correction circuitry corrects detection signals detected by the photon-counting detector for the respective X-ray detection elements, based on a centroid of an X-ray spectrum detected by the photon-counting detector. The reconstruction circuitry reconstructs a CT image based on the corrected detection signals.
摘要:
An X-ray computer tomography (CT) apparatus according to an embodiment includes an X-ray source, an X-ray detector, and generating circuitry. The X-ray source radiates X-rays. The X-ray detector includes a scintillator including a first region close to the X-ray source and a second region distant from the X-ray source, an optical sensor that detects scintillator light obtained by converting the X-rays radiated from the X-ray source with the scintillator, and a variable layer that is provided in the scintillator and switchable between a first state in which the variable layer transmits the scintillator light between the first region and the second region and a second state in which the variable layer does not transmit the scintillator light between the first region and the second region. The generating circuitry generates a CT image based on a signal output from the X-ray detector.
摘要:
A photon counting X-ray CT apparatus according to an embodiment includes: data acquiring circuitry, and processing circuitry. The data acquiring circuitry is configured to allocate energy measured by signals output from a photon counting detector in response to incidence of X-ray photons to any of a plurality of first energy bins so as to acquire a first data group as count data of each of the first energy bins. The processing circuitry is configured to determine a plurality of second energy bins obtained by grouping the first energy bins in accordance with a decomposition target material that is a material to be decomposed in a imaging region, allocate the first data group to any of the second energy bins so as to generate a second data group, and use the second data group to generate an image representing a distribution of the decomposition target material.