摘要:
The motion estimation techniques and video encoding device(s) described use a two dimensional pipeline to generate accurate motion estimation parameters for a current video block. The two dimensional pipeline uses previously calculated motion estimation parameters of relevant neighboring video blocks, including a preceding video block on a same row as the current video block, prior to the generation of the accurate motion vectors, motion vector predictors, and mode decision of the current video block. The use of the two dimensional pipeline allows accurate motion vector prediction from neighboring video blocks previously not available, in the computation of motion vectors. Three engines may be used in the two dimensional pipeline, a fetch engine, an integer search engine and a fractional and spatial search engine. While the fetch engine and fraction and spatial search engine operate on one row, the integer search engine operates on another row.
摘要:
An embodiment is directed to a method for selecting a predictive macroblock partition from a plurality of candidate macroblock partitions in motion estimation and compensation in a video encoder including determining a bit rate signal for each of the candidate macroblock partitions, generating a distortion signal for each of the candidate macroblock partitions, calculating a cost for each of the candidate macroblock partitions based on respective bit rate and distortion signals to produce a plurality of costs, and determining a motion vector from the costs. The motion vector designates the predictive macroblock partition.
摘要:
Techniques for intensity compensation in video processing are provided. In one configuration, a wireless communication device compliant with the VC1-SMPTE standard (e.g., cellular phone, etc.) comprises a processor that is configured to execute instructions operative to reconstruct reference frames from a received video bitstream. A non-intensity-compensated copy of a reference frame of the bitstream is stored in a memory of the device and used for defining the displayable images and for on-the-fly generation of a stream of intensity-compensated pixels to perform motion compensation calculations for frames of the video bitstream.
摘要:
This disclosure describes electronic video image stabilization techniques for imaging and video devices. The techniques involve determining motion and spatial statistics for individual macroblocks of a frame, and determining a global motion vector for the frame based on the statistics of each of the macroblocks. In one embodiment, a method of performing electronic image stabilization includes performing spatial estimation on each of a plurality of macroblocks within a frame of an image to obtain spatial statistics for each of the macroblocks, performing motion estimation on each of the plurality of macroblocks to obtain motion statistics for each of the macroblocks, integrating the spatial statistics and the motion statistics of each of the macroblocks to determine a global motion vector for the frame, and offsetting the image with respect to a reference window according to the global motion vector.
摘要:
This disclosure describes electronic video image stabilization techniques for imaging and video devices. The techniques involve determining motion and spatial statistics for individual macroblocks of a frame, and determining a global motion vector for the frame based on the statistics of each of the macroblocks. In one embodiment, a method of performing electronic image stabilization includes performing spatial estimation on each of a plurality of macroblocks within a frame of an image to obtain spatial statistics for each of the macroblocks, performing motion estimation on each of the plurality of macroblocks to obtain motion statistics for each of the macroblocks, integrating the spatial statistics and the motion statistics of each of the macroblocks to determine a global motion vector for the frame, and offsetting the image with respect to a reference window according to the global motion vector.
摘要:
Techniques for intensity compensation in video processing are provided. In one configuration, a wireless communication device compliant with the VC1-SMPTE standard (e.g., cellular phone, etc.) comprises a processor that is configured to execute instructions operative to reconstruct reference frames from a received video bitstream. A non-intensity-compensated copy of a reference frame of the bitstream is stored in a memory of the device and used for defining the displayable images and for on-the-fly generation of a stream of intensity-compensated pixels to perform motion compensation calculations for frames of the video bitstream.
摘要:
An embodiment is directed to a method for selecting a predictive macroblock partition from a plurality of candidate macroblock partitions in motion estimation and compensation in a video encoder including determining a bit rate signal for each of the candidate macroblock partitions, generating a distortion signal for each of the candidate macroblock partitions, calculating a cost for each of the candidate macroblock partitions based on respective bit rate and distortion signals to produce a plurality of costs, and determining a motion vector from the costs. The motion vector designates the predictive macroblock partition.
摘要:
The motion estimation techniques and video encoding device(s) described use a two dimensional pipeline to generate accurate motion estimation parameters for a current video block. The two dimensional pipeline uses previously calculated motion estimation parameters of relevant neighboring video blocks, including a preceding video block on a same row as the current video block, prior to the generation of the accurate motion vectors, motion vector predictors, and mode decision of the current video block The use of the two dimensional pipeline allows accurate motion vector prediction from neighboring video blocks previously not available, in the computation of motion vectors. Three engines may be used in the two dimensional pipeline, a fetch engine, an integer search engine and a fractional and spatial search engine. While the fetch engine and fraction and spatial search engine operate on one row, the integer search engine operates on another row.
摘要:
An improved system for an interactive voice recognition system (400) includes a voice prompt generator (401) for generating voice prompt in a first frequency band (501). A speech detector (406) detects presence of speech energy in a second frequency band (502). The first and second frequency bands (501, 502) are essentially conjugate frequency bands. A voice data generator (412) generates voice data based on an output of the voice prompt generator (401) and audible speech of a voice response generator (402). A control signal (422) controls the voice prompt generator (401) based on whether the speech detector (406) detects presence of speech energy in the second frequency band (502). A back end (405) of the interactive voice recognition system (400) is configured to operate on an extracted front end voice feature based on whether the speech detector (406) detects presence of speech energy in the second frequency band (502).
摘要:
Motion estimation in video compressions systems. A programmable motion estimator may be used to estimate a motion vector for a macroblock in a current frame by searching for a matching macroblock in a previous frame. A controller may be used to program the motion estimator to perform a particular search.