摘要:
A process control method for UMG-Si purification by performing a directional solidification of molten UMG-Si to form a silicon ingot is described. The ingot is divided into bricks and the resistivity profile of each silicon brick is mapped. A crop line for removing the impurities concentrated and captured in the ingot during the directional solidification is calculated based on the resistivity map. The concentrated impurities are then removed by cropping each brick along that brick's calculated crop line.
摘要:
A quality control process for determining the concentrations of boron and phosphorous in a UMG-Si feedstock batch is provided. A silicon test ingot is formed by the directional solidification of molten UMG-Si from a UMG-Si feedstock batch. The resistivity of the silicon test ingot is measured from top to bottom. Then, the resistivity profile of the silicon test ingot is mapped. From the resistivity profile of the silicon test ingot, the concentrations of boron and phosphorous of the UMG-Si silicon feedstock batch are calculated. Additionally, multiple test ingots may be grown simultaneously, with each test ingot corresponding to a UMG-Si feedstock batch, in a multi-crucible crystal grower.
摘要:
A quality control process for determining the concentrations of boron and phosphorous in a UMG-Si feedstock batch is provided. A silicon test ingot is formed by the directional solidification of molten UMG-Si from a UMG-Si feedstock batch. The resistivity of the silicon test ingot is measured from top to bottom. Then, the resistivity profile of the silicon test ingot is mapped. From the resistivity profile of the silicon test ingot, the concentrations of boron and phosphorous of the UMG-Si silicon feedstock batch are calculated. Additionally, multiple test ingots may be grown simultaneously, with each test ingot corresponding to a UMG-Si feedstock batch, in a multi-crucible crystal grower.
摘要:
Techniques for controlling resistivity in the formation of a silicon ingot from compensated feedstock silicon material prepares a compensated, upgraded metallurgical silicon feedstock for being melted to form a silicon melt. The compensated, upgraded metallurgical silicon feedstock provides semiconductor predominantly of a single type (p-type or n-type) for which the process assesses the concentrations of boron and phosphorus and adds a predetermined amount of boron, phosphorus, aluminum and/or gallium. The process further melts the silicon feedstock with the boron, phosphorus, aluminum and/or gallium to form a molten silicon solution from which to perform directional solidification and maintains the homogeneity of the resistivity of the silicon throughout the ingot. A balanced amount of phosphorus can be optionally added to the aluminum and/or gallium. Resistivity may also be measured repeatedly during ingot formation, and additional dopant may be added in response, either repeatedly or continuously.
摘要:
Techniques for controlling resistivity in the formation of a silicon ingot from compensated feedstock silicon material prepares a compensated, upgraded metallurgical silicon feedstock for being melted to form a silicon melt. The compensated, upgraded metallurgical silicon feedstock provides semiconductor predominantly of a single type (p-type or n-type) for which the process assesses the concentrations of boron and phosphorus and adds a predetermined amount of boron, phosphorus, aluminum and/or gallium. The process further melts the silicon feedstock with the boron, phosphorus, aluminum and/or gallium to form a molten silicon solution from which to perform directional solidification and maintains the homogeneity of the resistivity of the silicon throughout the ingot. A balanced amount of phosphorus can be optionally added to the aluminum and/or gallium. Resistivity may also be measured repeatedly during ingot formation, and additional dopant may be added in response, either repeatedly or continuously.