摘要:
A method of fabricating workpieces includes one or more layers on a substrate that are masked with an ion implantation mask comprising two or more layers. The mask layers include a first mask layer closer to the substrate, and a second mask layer on the first mask layer. The method also comprises ion implanting one or more of the layers on the substrate. Ion implantation may form portions with altered physical properties from the layers under the mask. The portions may form a plurality of non-magnetic regions corresponding to apertures in the mask.
摘要:
A method of fabricating workpieces includes one or more layers on a substrate that are masked with an ion implantation mask comprising two or more layers. The mask layers include a first mask layer closer to the substrate, and a second mask layer on the first mask layer. The method also comprises ion implanting one or more of the layers on the substrate. Ion implantation may form portions with altered physical properties from the layers under the mask. The portions may form a plurality of non-magnetic regions corresponding to apertures in the mask.
摘要:
A disk that is identified as defective in a manufacturing process is reused for conditioning a deposition tool that deposits a magnetic material onto disks. After the disk has been identified as defective, a surface of the disk is cleaned in a cleaning tool to remove a lubricant material using a dry etch process. The cleaned disk is moved from the cleaning tool into the deposition tool. The deposition tool is conditioned by depositing the magnetic material onto the cleaned surface of the disk. Because the disk has been cleaned, reusing the defective disk to condition the deposition tool does not contaminate the deposition tool.
摘要:
A method for manufacturing a magnetic read sensor at very narrow track widths. The method uses an amorphous carbon mask layer to pattern the sensor by ion milling, rather than a mask constructed of a material such as photoresist or DURIMIDE® which can bend over during ion milling at very narrow track widths. By using the amorphous carbon layer as the masking layer, the trackwidth can be very small, while avoiding this bending over of the mask that has been experienced with prior art methods. In addition, the track-width can be further reduced by using a reactive ion etching to further reduce the width of the amorphous carbon mask prior to patterning the sensor. The method also allows extraneous portions of the side insulation layer and hard bias layer to be removed above the sensor by a light CMP process.
摘要:
A method for manufacturing a magnetic read sensor at very narrow track widths. The method uses an amorphous carbon mask layer to pattern the sensor by ion milling, rather than a mask constructed of a material such as photoresist or DURIMIDE® which can bend over during ion milling at very narrow track widths. By using the amorphous carbon layer as the masking layer, the trackwidth can be very small, while avoiding this bending over of the mask that has been experienced with prior art methods. In addition, the track-width can be further reduced by using a reactive ion etching to further reduce the width of the amorphous carbon mask prior to patterning the sensor. The method also allows extraneous portions of the side insulation layer and hard bias layer to be removed above the sensor by a light CMP process.
摘要:
A magnetic head according to one embodiment includes a side gap layer comprising primarily silicon nitride, wherein outer sides of the side gap layer taper away from one another from a leading end of the side gap layer towards a trailing end of the side gap layer; a seed layer above the silicon nitride side gap layer; and a magnetic pole on the seed layer. A method for forming a magnetic head according to one embodiment includes etching a channel in a silicon oxide layer; forming a side gap layer comprising primarily silicon nitride in the channel; forming a seed layer above the side gap layer; plating a pole on the seed layer; and removing the silicon oxide layer by wet etching. Additional systems and methods are also presented.
摘要:
A magnetic head according to one embodiment includes a side gap layer comprising primarily silicon nitride, wherein outer sides of the side gap layer taper away from one another from a leading end of the side gap layer towards a trailing end of the side gap layer; a seed layer above the silicon nitride side gap layer; and a magnetic pole on the seed layer. A method for forming a magnetic head according to one embodiment includes etching a channel in a silicon oxide layer; forming a side gap layer comprising primarily silicon nitride in the channel; forming a seed layer above the side gap layer; plating a pole on the seed layer; and removing the silicon oxide layer by wet etching. Additional systems and methods are also presented.