摘要:
One aspect of the invention relates to a linker-free, one-step method of grafting polymer films onto organic substrates, and the films obtained by such a method. In certain embodiments, the grafted polymer films are conductive. In certain embodiments, said grafting method utilizes the ability for Friedel-Crafts catalyst to form radical cations from organic substrates. In one embodiment, the method provides poly-3,4-ethylenedioxythiophene (PEDOT) thin films grafted to organic substrates. In other embodiments, the method is applicable to the polymerization of other monomers to yield conducting polymers, such as polyanilines, polypyrroles, polyfurans, polythiophenes and their derivatives. Remarkably, the polymer films grafted by the inventive methods show enormous increases in adhesion strength. Further, in certain embodiments, polymer patterns were easily obtained using the inventive methods and soft lithography techniques. In certain embodiments, well-defined high-density line-and-space patterns were successfully obtained. In certain embodiments, e.g., when the polymer film is conducting, the obtained conducting polymer pattern grafted on common organic substrates can be used for integrated circuitry in flexible electronics.
摘要:
One aspect of the invention relates to a linker-free, one-step method of grafting polymer films onto organic substrates, and the films obtained by such a method. In certain embodiments, the grafted polymer films are conductive. In certain embodiments, said grafting method utilizes the ability for Friedel-Crafts catalyst to form radical cations from organic substrates. In one embodiment, the method provides poly-3,4-ethylenedioxythiophene (PEDOT) thin films grafted to organic substrates. In other embodiments, the method is applicable to the polymerization of other monomers to yield conducting polymers, such as polyanilines, polypyrroles, polyfurans, polythiophenes and their derivatives. Remarkably, the polymer films grafted by the inventive methods show enormous increases in adhesion strength. Further, in certain embodiments, polymer patterns were easily obtained using the inventive methods and soft lithography techniques. In certain embodiments, well-defined high-density line-and-space patterns were successfully obtained. In certain embodiments, e.g., when the polymer film is conducting, the obtained conducting polymer pattern grafted on common organic substrates can be used for integrated circuitry in flexible electronics.
摘要:
One aspect of the invention relates to a linker-free, one-step method of grafting polymer films onto organic substrates, and the films obtained by such a method. In certain embodiments, the grafted polymer films are conductive. In certain embodiments, said grafting method utilizes the ability for Friedel-Crafts catalyst to form radical cations from organic substrates. In one embodiment, the method provides poly-3,4-ethylenedioxythiophene (PEDOT) thin films grafted to organic substrates. In other embodiments, the method is applicable to the polymerization of other monomers to yield conducting polymers, such as polyanilines, polypyrroles, polyfurans, polythiophenes and their derivatives. Remarkably, the polymer films grafted by the inventive methods show enormous increases in adhesion strength. Further, in certain embodiments, polymer patterns were easily obtained using the inventive methods and soft lithography techniques. In certain embodiments, well-defined high-density line-and-space patterns were successfully obtained. In certain embodiments, e.g., when the polymer film is conducting, the obtained conducting polymer pattern grafted on common organic substrates can be used for integrated circuitry in flexible electronics.
摘要:
An organic electro-luminescence (EL) device includes a first electrode formed on a substrate and a second electrode formed to overlap with the first electrode. An organic EL layer is located between the first and second electrodes. A dielectric layer is formed between the second electrode and the EL layer. The dielectric layer contains antioxidative material, formed by a mixture of approximately 50˜75% of an organic material and approximately 25˜50% of an metallic powder. The organic electro-luminescence device demonstrates an increased picture quality and increased luminous efficiency.
摘要:
Disclosed are double-spiro organic compounds and an organic electroluminescence (EL) device using the same. The double-spiro organic compounds are configured to have at least three planar and substantially linear moieties, such that one planar moiety is located between two neighboring planar moieties and that the intervening planar moiety shares an atom with each of the two neighboring planar moieties. The double-spiro compounds generally have high melting point above about 300 degree C. and low crystallinity, which provide thermal stability to the organic EL devices. These organic compounds have good sublimability. They also have light-emitting, hole-injecting, hole-transporting, electron injection, electron-transporting properties and characteristics, which are favorable in the organic EL devices.
摘要:
Disclosed are double-spiro organic compounds and an organic electroluminescence (EL) device using the same. The double-spiro organic compounds are configured to have at least three planar and substantially linear moieties, such that one planar moiety is located between two neighboring planar moieties and that the intervening planar moiety shares an atom with each of the two neighboring planar moieties. The double-spiro compounds generally have high melting point above about 300 degree C. and low crystallinity, which provide thermal stability to the organic EL devices. These organic compounds have good sublimability. They also have light-emitting, hole-injecting, hole-transporting, electron injection, electron-transporting properties and characteristics, which are favorable in the organic EL devices.