摘要:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
摘要:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
摘要:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
摘要:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
摘要:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
摘要:
The lamp shown herein is a beam mode fluorescent lamp for general lighting applications. The lamp comprises a light transmitting envelope, having a phosphor coating in its inner surface, the envelope encloses a thermionic cathode having a number of segments for emitting electrons, a plurality of anodes for accelerating the electrons and forming a corresponding number of electron beams simultaneously in two directions, and a fill material, such as mercury, which emits ultraviolet radiation upon excitation. The multi-electrode array configuration provides an extended region of electron beam excitation and thereby more visible light. A single power source and pair of connecting conductors provide both cathode heating current and electrode potential difference functions. In addition, this configuration provides for a greater and more complete discharge of the volume within the envelope than single electrode elements. The present invention permits a higher operating voltage, lower power density, and a lower operating temperature for the lamp.
摘要:
An apparatus and method for operating an arc discharge lamp which can be hot restarted is described. The method involves providing low microwave power after the lamp ballast is disconnected from the lamp. The microwave power is modulated such that conductivity is maintained within the lamp as the lamp cools. Restarting the lamp is accomplished by reconnecting the ballast at any time. In one embodiment, the apparatus of the invention includes an arc discharge lamp and ballast coupled together with a switch to turn the lamp on and off. A microwave power supply is connected in parallel with the ballast and is coupled to the lamp when the ballast is shut off. The invention allows for hot restart of the arc lamp without requiring a high voltage pulse.
摘要:
Ignition of high intensity discharge (HID) lamps can be enhanced by the application of ultrahigh frequency (UHF) electric fields at modest power levels. The implementation of UHF power assisted starting offers considerable advantage over known prior art lower frequency power starting methods. Solid state circuits and coupled means can be utilized as described therein.
摘要:
A multipulse starting aid for a high-intensity discharge lamp includes a spiral line, a bi-directional solid-state switch, or a spark gap, coupled to one of the ends of the spiral line, a resistance in association with the spiral line to provide an RC time constant. The time constant RC is so adjusted that, upon receiving the alternating current voltage from the appropriate source, a waveform of voltage is presented across the pair of terminals of the lamp, together with the series of pulses at the peak of each half cycle of the waveform. thereby enhancing the lamp startability.
摘要:
The lamp shown herein is a beam mode fluorescent lamp for general lighting applications. The lamp comprises a light transmitting envelope, having a phosphor coating on its inner surface, enclosing a thermionic cathode for emitting electrons and an anode for accelerating the electrons and forming an electron beam, and a fill material, such as mercury, which emits ultraviolet radiation upon excitation. The cathode configuration provides for the elimination of "hot spots" due to ion bombardment at the low potential end of the cathode and for higher overall cathode emission of electrons. Various methods are employed to accomplish these ends, such as: segmenting the cathode, pitch variation of the cathode winding; ion probes and a non-uniform primary coil wound around a larger mandrel wire.