Abstract:
A first display discharge lamp has a transparent airtight container filled with a discharge gas; a positive electrode disposed in the airtight container and supported by a stem having an air tube therein; a negative electrode of an inverted configuration disposed in the transparent airtight container and surrounded by the positive electrode; a lead member integrally formed with the positive electrode, having a bent portion between a lower end of the negative electrode and the stem; and an insulating member disposed between the lower end of the negative electrode and the bent portion of the lead member. According to a second display discharge lamp, both a negative electrode and a positive electrode are of an inverted conical configuration. The former has at least an open upper end, while the latter has an open upper end and an open lower end. A lower end of the positive electrode is inserted in an interior of the negative electrode from the open upper end of the negative electrode. And, a lower/outer periphery of the positive electrode is, in a non-contact condition, opposed to an upper/inner periphery of the negative electrode.
Abstract:
This invention provides an illumination device capable of producing large animated displays using glowing neon or other noble gases without the need for a source of high voltage as is required in normal neon signs. By means of large numbers of electrode pairs, gas discharge across the gas passage rather than along the gas passage enables low voltages to excite the flowing gas discharge while still giving the appearance of the continuous discharge seen in normal neon signs. The use of mixtures of luminescent phosphors of different luminescent decay times allows the hue of the illumination device to be electrically controlled by means of the frequency with which the discharge is excited. The controlled, sequential activation of any given electrode pair further allows the illumination device to give the appearance of animation, and the use of front and rear mirrors enables an infinite series of multiple, animated, illuminated images to be displayed. The simultaneous use of controlled illumination sequence and illumination frequency allows the display to achieve the appearance of sequential, smoothly continuous waves of different color hues sweeping across an animated display.
Abstract:
A spectral source comprises a lamp containing an anode and a cathode in an inert gas. The anode and cathode are different in shape and connected to a high-frequency power source to produce a high-frequency discharge between the anode and cathode to cause both sputtering of the cathode and excitation of a radiation having the spectrum according to the material sputtered from the cathode. The application of solely high-frequency power prevents adherence of the sputtered material to the interior walls of the lamp bulb thereby allowing a reduction of the dimensions of the lamp bulb, prolongating the life time of the lamp and increasing the stability and intensity of the radiation. A magnetic field may be applied to the radiation for Zeeman modulation. Due to the relatively small dimensions of the lamp bulb, relatively small and inexpensive magnets may be used.
Abstract:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
Abstract:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
Abstract:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
Abstract:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
Abstract:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
Abstract:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.