摘要:
A piezo actuator with an actuator body has at least one electrically conductive multi-layer film with a rigid electrical terminal element. The multi-layer film controls expansion and attraction of the actuator body. An electrical conduction layer of the multi-layer film has at least one recess to increase flexibility. The recesses in the conduction layer are, for example, photolitho-graphically produced.
摘要:
An additional contacting (30) for a piezoelectric component (10) is formed as a multilayer structure, wherein the piezoelectric component (10) is formed by a stack (16) of alternatingly arranged piezoelectric ceramic layers (11) and electrode layers (12, 13). The additional contacting (30) has a series of connecting elements (31) for connecting a metallization (15) of the electric component (10) to an electrical connecting element (19). In order to minimize mechanical loads during dynamic operation of the piezoelectric component (10), the additional contacting (30) is configured as an individual, structured component (32), especially in the form of a structured foil. Said structured foil (32) advantageously has a current conduction path (33) which is common to the connecting elements (31) and a contacting zone formed in the area of static base plate (17), wherein the additional contacting (30) is connected to the electrical connecting element in the area of said contacting zone.
摘要:
A method for producing a correlation between a first state of a piezoelectric component (1, 20) comprising a piezoceramic element and a second state of the component comprises the following steps: a) a first group of components respectively in the first state is prepared (101), b) at least one defined characteristic of each component of the first group is determined (102), c) the piezoceramic element of the components of the first group is polarised, and a corresponding component of a second group in the second state is thus created from each component of the first group (103), d) at least one defined characteristic of each component of the second group is determined (104), and e) the correlation is produced by comparing the defined characteristics of each component of the first group with the defined characteristic of the corresponding component of the second group (105).
摘要:
A method for producing a correlation between a first state of a piezoelectric component (1, 20) comprising a piezoceramic element and a second state of the component comprises the following steps: a) a first group of components respectively in the first state is prepared (101), b) at least one defined characteristic of each component of the first group is determined (102), c) the piezoceramic element of the components of the first group is polarised, and a corresponding component of a second group in the second state is thus created from each component of the first group (103), d) at least one defined characteristic of each component of the second group is determined (104), and e) the correlation is produced by comparing the defined characteristics of each component of the first group with the defined characteristic of the corresponding component of the second group (105).
摘要:
A piezo actuator (1) is disclosed that has a contact lug (20, 21) for the electrical contacting of an electrode (14, 15) of an actuator member (11). Due to an expansion and contraction of the actuator member, a mechanical stress occurs in the contact lug that is minimized in that the contact lug has a device for adapting the expanse to a dimension of the expansion and contraction. The device is, for example, a deformation material in the form of a wire weave. The piezo actuator is utilized for the drive of an injection valve in an internal combustion engine.
摘要:
An embodiment of the invention relates to a solid-state actuator, especially a piezoceramic actuator, which comprises a support layer to which at least one actuator layer, especially a piezoceramic layer, is applied, the actuator layer being disposed between contact electrodes. In order to avoid a creep behaviour of the solid-state actuator, the resistivity of the actuator layer is rated between 1108 Ωm to 11010 Ωm and/or an actuator control device for applying a control voltage to the contact electrodes is provided and the maximum control voltage is selected in such a manner that the maximum mechanical voltage in the solid-state actuator is below the coercive voltage.
摘要:
A piezoelectric component in the form an actuator having a monolithic multi-layer stack is disclosed. The stack comprises a large active cross sectional area and simultaneously exhibits high arc-over resistance between neighboring electrodes of different polarity. For manufacture, only the surface of the stack via which an electrical contacting of the electrode layers ensues is ground after the sintering of a stack composed of piezo ceramic layers and electrode layers arranged on top of one another.
摘要:
The invention relates to a piezoactuator (1) comprising a piezoelectric body (4) and elements for pre-tensioning the piezoelectric body, consisting of a first (2) and a second (3) connecting element for transferring forces to the piezoelectric body (4). The actuator is provided with an element (6) for transferring tensile/pressure forces between the connecting elements (2, 3), said element being at least partially located in a gap (5) in the form of a bore in the piezoelectric body (4). According to the invention, the piezoactuator (1) is set to a defined working curve using the pre-tensioning elements (2, 3, 6). The piezoelectric body (4) is preferably produced by the lamination of piezoelectric layers, into which a gap is drilled after lamination and the component is subsequently sintered.
摘要:
The invention relates to a piezoceramic composition with the general empirical formula Pb1-aREbZrxTiyTRzO3, in which RE represents a rare-earth element, selected from a group comprising europium, gadolinium, lanthanum, neodymium, praseodymium, promethium and/or samarium, with a rare-earth element fraction b, TR represents at least one transition metal, selected from the group comprising chromium, iron and/or manganese, with a transition metal valency W TR and a transition metal fraction z and whereby the following interrelation is valid: z>b/(4−W TR ). Homogenous PZT crystals with a maximum particle size are obtained even at low sintering temperatures by a non-stoichiometric dosing ratio of transition metal dosage to rare-earth element dosage. By varying the dosages, the piezoelectric characteristics of a PZT ceramic with said composition can be modified from those of a classic soft PZT to those of a classic hard PZT. The piezoceramic body is for example a monolithic, multi-layer piezoactuator, which can be used for multiple injections in the engine of a motor vehicle, as a result of a high d33 coefficient and low internal dissipation in the high-level signal range.
摘要翻译:本发明涉及一种具有一般经验公式的压电陶瓷组合物,其具有如下通式:Pb 1-a / b B x Ti x Ti 其中RE表示选自铕,钆,镧,钕,镨,ium and和/或钐的稀土元素, 使用稀土元素级分b,TR表示选自过渡金属化合价W SB SB和过渡金属馏分z的至少一种过渡金属(选自铬,铁和/或锰) 并且由此以下相关性有效:z> b /(4-W TR SB>)。 即使在低烧结温度下,过渡金属剂量与稀土元素用量的非化学计量剂量比也可获得具有最大粒度的均匀PZT晶体。 通过改变剂量,可以将具有所述组合物的PZT陶瓷的压电特性从经典的软PZT改变为经典的硬PZT的压电特性。 压电陶瓷体是例如单片多层压电致动器,其可用于机动车辆的发动机中的多次注射,这是由于高的系数和低的内部耗散 高电平信号范围。
摘要:
A ceramic element includes at least one substantially homogeneous ceramic layer which is provided with a plurality of superimposed partial ceramic layers. The ceramic element can be produced by stacking partial homogeneous ceramic layers on top of each other in the form of ceramic green films, removing the binding agent, and sintering. The ceramic element can be compacted at a lower sintering temperature than conventional block sinters. Moreover, the ceramic layer of the ceramic element is provided with a low number of pores, enclosures, foreign phases, and other flaws and is highly homogeneous. The ceramic element particularly represents a piezoelectric bending transducer or a piezoelectric transformer. Advantageously, the bending transducer or transformer has electrodes so as to be electrically triggered, the electrodes being buried underneath another ceramic layer. The additional ceramic layer and/or the electrode layer are used as a diffusion barrier.