摘要:
A pulse wave sensor main unit is provided with a pair of band anchoring portions that are positioned in the direction of the circumference of the wrist and through which the band is passed. Strip-shaped band insertion holes are formed in the band anchoring portions. The band is an elastic long strip-shaped body. The band is formed of material such as rubber that is flexibly deformed when external force is applied and is restored to its original shape by its own elasticity when external force is removed. The band is so set that its thickness is larger than the dimension of the shorter sides of the band insertion holes and its width is larger than the dimension of the longer sides of the band insertion holes.
摘要:
In a portable biological information monitor apparatus, a pulse wave detection signal obtained by light emission from a green LED and a body motion detection signal obtained by light emission from an infrared LED are detected as biological information. This biological information is analyzed to compute various barometers. In a wake normal mode of a set generation mode, body motion and pulse are calculated as wake evaluation barometers for evaluation of a test subject's status in wake. In a wake steady state motion mode, body motion, pulse, and pitch are calculated as motion evaluation barometers for evaluation of the test subject's status in steady state motion. In a sleep mode, body motion, pulse, and autonomic nervous function are calculated as sleep evaluation barometers for evaluation of the test subject's status in sleep. Necessary barometers are thereby generated regardless of the test subject's action using the portable monitor apparatus alone.
摘要:
In a portable biological information monitor apparatus, a pulse wave detection signal obtained by light emission from a green LED and a body motion detection signal obtained by light emission from an infrared LED are detected as biological information. This biological information is analyzed to compute various barometers. In a wake normal mode of a set generation mode, body motion and pulse are calculated as wake evaluation barometers for evaluation of a test subject's status in wake. In a wake steady state motion mode, body motion, pulse, and pitch are calculated as motion evaluation barometers for evaluation of the test subject's status in steady state motion. In a sleep mode, body motion, pulse, and autonomic nervous function are calculated as sleep evaluation barometers for evaluation of the test subject's status in sleep. Necessary barometers are thereby generated regardless of the test subject's action using the portable monitor apparatus alone.
摘要:
A driver's condition detection device is for detecting a first life information indicating a driver's degree of activity. The driver's condition classification device is for classifying the first life information into at least two regions. The driver's condition determination device is for determining the driver's condition based on a distribution of the first life information in the regions.
摘要:
A driver's condition detection device is for detecting a first life information indicating a driver's degree of activity. The driver's condition classification device is for classifying the first life information into at least two regions. The driver's condition determination device is for determining the driver's condition based on a distribution of the first life information in the regions.
摘要:
A microcomputer included in a physical condition monitoring system calculates the amount of autonomic nerve activity during sleep based on physical information during sleep collected by a physical information collecting device 1. The physical information contains heart rates, blood pressure, respiratory rate, and the amount of body movement. The microcomputer also receives various kinds of information including training conditions via an input device. Then, it displays the amount of autonomic nerve activity and the training conditions on a display device in a manner that connections between them are indicated.
摘要:
A microcomputer included in a physical condition monitoring system calculates the amount of autonomic nerve activity during sleep based on physical information during sleep collected by a physical information collecting device 1. The physical information contains heart rates, blood pressure, respiratory rate, and the amount of body movement. The microcomputer also receives various kinds of information including training conditions via an input device. Then, it displays the amount of autonomic nerve activity and the training conditions on a display device in a manner that connections between them are indicated.
摘要:
A detecting apparatus for detecting a living body information includes a sensor body provided to contact a surface of a living body, and a band fixing bar elongated in a longitudinal direction, through which a band is engaged and is detachably connectable to the sensor body. In the detecting apparatus, the sensor body has a pair of holding portions for holding end portions of the band fixing bar in the longitudinal direction. The holding portion has an inlet concave portion from which the end portion of the band fixing bar is inserted, and a recess portion for receiving the end portion of the band fixing bar. Furthermore, the recess portion communicates with the inlet concave portion and recesses toward the living body, and the end portion of the band fixing bar is fitted into the recess portion. Therefore, the band fixing bar does not easily come off from the sensor body.
摘要:
A biosensor senses pulse wave data of a user. The biosensor stores relation information, which indicates a relationship between recommended bedtime data and sleep-affecting activity data. The relationship between the recommended bedtime data and the sleep-affecting activity data is determined in view of at least one of previously sensed pulse wave data of the user and model pulse wave data. The biosensor receives at least one sleep-affecting activity value from the user. The biosensor computes recommended bedtime information based on the at least one sleep-affecting activity value in view of the relation information. The biosensor gives notification to the user based on the recommended bedtime information.
摘要:
A biosensor senses pulse wave data of a user. The biosensor stores relation information, which indicates a relationship between recommended bedtime data and sleep-affecting activity data. The relationship between the recommended bedtime data and the sleep-affecting activity data is determined in view of at least one of previously sensed pulse wave data of the user and model pulse wave data. The biosensor receives at least one sleep-affecting activity value from the user. The biosensor computes recommended bedtime information based on the at least one sleep-affecting activity value in view of the relation information. The biosensor gives notification to the user based on the recommended bedtime information.