摘要:
A light transmitting optical fiber having at least one coating layer of an ultraviolet curing resin on an outer surface of the fiber, in which the ultraviolet curing resin used in an outermost layer has a Young's modulus of at least 100 kg/mm.sup.2 and an elongation of at least 30%.
摘要:
A coated optical fiber comprising a light-transmitting fiber and a resin coating layer disposed on the outer periphery of the light-transmitting fiber is formed, an external flaw is imparted to the surface of the resin coating layer while running the coated optical fiber, and then the coated optical fiber is subjected to the measurement of a tensile breaking strength thereof. At this time, the fiber having a strength retention ratio R.sub.S =S.sub.A /S.sub.0 of 0.98 or more, wherein S.sub.A is the median value of the tensile breaking strength after the provision of the external flaw, and S.sub.0 is the median value of the tensile breaking strength before the provision of the external flaw, is selected as a non-defective product.
摘要翻译:在透光性纤维的外周形成包含透光性纤维和树脂被覆层的被覆光纤,在涂布光纤的行进时,向树脂被覆层的表面施加外部缺陷, 然后对被覆光纤进行拉伸断裂强度的测定。 此时,强度保持率RS = SA / S0为0.98以上的纤维,其中SA为提供外部缺陷后的拉伸断裂强度的中值,S0为拉伸断裂的中值 在提供外部缺陷之前的强度被选为无缺陷产品。
摘要:
A coated optical fiber comprising a light-transmitting fiber and a resin coating layer disposed on the outer periphery of the light-transmitting fiber is formed, an external flaw is imparted to the surface of the resin coating layer while running the coated optical fiber, and then the coated optical fiber is subjected to the measurement of a tensile breaking strength thereof. At this time, the fiber having a strength retention ratio R.sub.S =S.sub.A /S.sub.0 of 0.98 or more, wherein S.sub.A is the median value of the tensile breaking strength after the provision of the external flaw, and S.sub.0 is the median value of the tensile breaking strength before the provision of the external flaw, is selected as a non-defective product. By using the above process for fabricating a coated optical fiber, it is possible to reduce both of the length and measuring period of time required for the evaluation of the external flaw resistance thereof, and to obtain a coated optical fiber having good characteristics while quantitatively evaluating the external flaw resistance of the fiber.
摘要:
A physical property evaluation method for optical fiber coating which is easy in producing a sample and high in accuracy and which is capable of measuring the shear modulus or tensile modulus with high accuracy, and a coated optical fiber with good lateral pressure characteristics using this evaluation method. The method comprises a step of producing a sample with the both end faces being parallel by cutting a coated optical fiber by a plane normal to the direction of the center axis of an optically transparent member, a step of holding the sample by securing the second coating layer, a step of pushing only the optically transparent member to impose a load thereon, thereby giving displacement to the optically transparent member and causing shear elastic deformation to the first coating layer, and a step of calculating the shear modulus or tensile modulus of a material forming the first coating layer, based on an amount of the displacement of the optically transparent member and a value of the load imposed thereon.
摘要:
In a method for molding an optical fiber fusion spliced portion, a mold coating is formed on a bare fiber portion of a fusion spliced portion of the optical fibers, using a resin compound having the characteristics where in a cured state, the tensile elongation is 70% or more and the tensile strength is 20MPa or more.
摘要:
A molding die 1 is constituted by an upper die 1a and a lower die 1b which are made of a material transparent to an ultraviolet light, and has a cavity 3 constituted by grooves 2c, 2d, whereas a resin injection gate 4 and a resin exit gate 7 are provided so as to communicate with the cavity 3. A junction of an optical fiber 10 is inserted into the cavity 3. A UV-curable resin is injected into the cavity 3 surrounding an exposing portion of the glass optical fiber 11 from the resin injection gate 4 positioned at one of coating ends of the optical fiber 10, whereas a part thereof is discharged from the resin exit gate 7 positioned at the other coating end. The ultraviolet light is emitted through the lower die 1b so as to cure the resin, thereby forming a reinforcement resin coating. As a consequence, bubbles can be prevented from occurring due to the residual air within the reinforcement resin coating in the junction of the optical fiber 10.
摘要:
When a glass fiber and an inner fiber coating layer are to be attached to a connector by removing an outer fiber coating layer while leaving the inner fiber coating layer as it is, a collective coating and the outer fiber coating layer can be removed at a stretch so that the inner fiber coating layer can easily and satisfactorily be exposed. In the ultraviolet curable resin coating layer of a coated optical fiber 17 of an optical fiber ribbon 11 for wiring of equipment, the inner fiber coating layer 15 has a Young's modulus of 600 MPa to 1000 MPa, and the outer fiber coating layer 16 has a Young's modulus of 10 MPa to 300 MPa. The material of the outer fiber coating layer 16 is made by mixing 100 weight parts of base resin, 1-30 weight parts of silicone-based additive, and 0.5 to 40 weight parts of long chain fatty acid ester compound, wherein the base resin is a material made of a urethane metha acrylate oligomer, a mono-functional or multi-functional reactive dilution monomer, and an optical initiator.
摘要:
When a glass fiber and an inner fiber coating layer are to be attached to a connector by removing an outer fiber coating layer while leaving the inner fiber coating layer as it is, a collective coating and the outer fiber coating layer can be removed at a stretch so that the inner fiber coating layer can easily and satisfactorily be exposed. In the ultraviolet curable resin coating layer of a coated optical fiber 17 of an optical fiber ribbon 11 for wiring of equipment, the inner fiber coating layer 15 has a Young's modulus of 600 MPa to 1000 MPa, and the outer fiber coating layer 16 has a Young's modulus of 10 MPa to 300 MPa. The material of the outer fiber coating layer 16 is made by mixing 100 weight parts of base resin, 1-30 weight parts of silicone-based additive, and 0.5 to 40 weight parts of long chain fatty acid ester compound, wherein the base resin is a material made of a urethane metha acrylate oligomer, a mono-functional or multi-functional reactive dilution monomer, and an optical initiator.
摘要:
In an optical fiber coating method comprising the steps of; applying an injecting first coating resin to the outer periphery of the optical fiber while inserting the optical fiber through a first die hole provided in a first coating die; and applying an injected second coating resin onto the first coating resin while inserting the optical fiber through a second die hole provided in a second coating die. Wherein a disk-shaped upper end face of the second coating die and a basically disk-shaped lower end face of the first coating die having a protrusion formed around the first die hole and projecting in the passing direction of the optical fiber are opposed to each other so as to arrange the first and second die holes concentrically, and the second coating resin is injected into the second die hole by way of a gap formed between the lower end face of the first coating die and the upper end face of the second coating die, so as to reduce an annular lower-pressure region formed around the optical fiber in a flow of the second coating resin within the gap.
摘要:
In a resin coating applicator, a holder 14 is fixed on a base 15 fitted to a drawing machine, and in the holder 14, hot water can be circulated from an inlet 18. The inner circumferential surface of the holder 14 is formed into a tapered shape so that the outer circumferential surface of a cup-like member 4 of a cartridge type coating sub-assembly 1 is fitted to the holder 14. The respective outer circumferential surfaces of a nipple 2 and a coating die 3 are cylindrical so as to be fitted to the inner circumferential surfaces of an inner cylindrical member 6, and they are positioned by a step portion. Further, they are pressed from the upper and lower sides by the bottom portion of the cup-like member 4 and a lid member 5. The lid member 5 is fastened to the cup-like member 4 integrally by a thread.