摘要:
The present invention has an object to obtain an optical waveguide probe which is formed in a hook form to illuminate and detect light by a manufacture using a silicon process. This optical waveguide probe is formed in a hook form and structured by an optical waveguide 1 sharpened at a probe needle portion 5 and formed of dielectric and a substrate 2 supporting this optical waveguide 1. This optical waveguide 1 is formed overlying the substrate 2. The optical waveguide 1 is structured by a core 8 to transmit light and a cladding 9 smaller in refractive index than the core 8.
摘要:
There is provided a near-field optical memory head for recording and/or reproducing information on a recording medium by utilizing near-field light which is a near-field optical memory head having a compact constitution and is suitable for mass production and array formation. According to the near-field optical memory head 11, in a planar substrate formed by penetrating at least one hole in a shape of an inverted pyramid such that a top portion thereof constitutes a very small aperture 4, a near-field light forming system for forming near-field light at a recording medium 1 and a near-field light detecting system for guiding propagating light 10 provided by interactively operating the formed near-field light with the very small aperture 4 to a light detecting element are integrated.
摘要:
A near-field optical head has a planar substrate having a first surface, a second surface disposed opposite to the first surface, and an inverted conical or pyramidal hole extending through the first and second surfaces. The conical or pyramidal hole has at least one fine aperture formed at an apex thereof and is disposed on the first surface of the planar substrate. An optical waveguide is disposed on the second surface of the planar substrate for propagating light. A light reflection film is disposed in the optical waveguide for reflecting in the direction of the fine aperture light propagated through the optical waveguide.
摘要:
An optical microcantilever for a scanning near field microscope comprises a support section, a cantilever-shaped optical waveguide, and a light blocking wall. The optical waveguide has a free end, a fixed end fixed to the support section and terminating in a light input/output end, and a tip formed at a side of the free end of the cantilever and having a microscopic aperture at an end thereof. The light blocking wall blocks the transmission of light scattered from a region of the light input/output end in the direction of the tip of the optical waveguide.
摘要:
An optical microcantilever has an optical waveguide for propagating light. The optical waveguide has a first side, a second side opposite to the first side, and a tip portion formed on the first side and at a free end of the optical waveguide. The tip portion has a microscopic aperture. A light blocking film is disposed on the first side of the optical waveguide. A reflecting film is disposed on the second side of the optical waveguide. A reflecting member forms part of the reflecting film and is disposed at the free end of the optical waveguide. The reflecting member has a generally planar surface for reflecting light propagated by the optical waveguide and for guiding the reflected light towards the microscopic aperture to generate near-field light at the microscopic aperture.
摘要:
An optical cantilever for an SNOM has a base portion, a cantilever portion extending from the base portion and having a hole formed proximate a distal end thereof, a dielectric member extending through the hole and having a sharpened tip at a first end projecting outward of a first surface of the cantilever portion, and a light shielding film covering the first surface of the cantilever portion and the first end of the dielectric member except for a portion of the sharpened tip so as to form a very small aperture at the sharpened tip which is not covered by the light shielding film.
摘要:
An optical microcantilever capable of reducing loss when propagating light. An optical microcantilever 10 comprises a support 1, an optical waveguide 2, a light-blocking film 3, a reflecting film 4, a pointed tip 5, a microscopic aperture 6 formed at the end of the tip 5, and a mirror 7 for reflecting propagating light H propagated from a light input/output end 8 of the optical waveguide 2 towards the microscopic aperture 6.
摘要:
An optical microcantilever capable of reducing loss when propagating light. An optical microcantilever 10 comprises a support 1, an optical waveguide 2, a light-blocking film 3, a reflecting film 4, a pointed tip 5, a microscopic aperture 6 formed at the end of the tip 5, and a mirror 7 for reflecting propagating light H propagated from a light input/output end 8 of the optical waveguide 2 towards the microscopic aperture 6.
摘要:
A near-field optical head has a planar substrate having a first surface, a second surface disposed opposite to the first surface, and an inverted pyramidal hole extending through the first and second surfaces. The inverted pyramidal hole has at least one fine aperture formed at an apex thereof and disposed in the first surface and having at least one curved slant surface. An optical waveguide extends into the inverted pyramidal hole of the planar substrate for propagating light along an optical path. A mirror is disposed in the optical waveguide for bending in the direction of the fine aperture the optical path of the light propagated through the optical waveguide.
摘要:
A near-field optical head has a planar substrate having a first surface, a second surface disposed opposite to the first surface, and an inverted conical or pyramidal hole extending through the first and second surfaces. The inverted conical or pyramidal hole has at least one fine aperture formed at an apex thereof and disposed in the first surface and having at least one curved slant surface. An optical waveguide extends into the inverted conical or pyramidal hole of the planar substrate for propagating light along an optical path. A mirror is disposed in the optical waveguide for bending in the direction of the fine aperture the optical path of the light propagated through the optical waveguide.