摘要:
In a microprocessor, a program key for decrypting a program and a data key for encrypting/decrypting data processed by the program are handled as cryptographically inseparable pair inside the microprocessor, so that it becomes possible for the microprocessor to protect processes that actually execute the program, without an intervention of the operating system, and it becomes possible to conceal secret information of the program not only from the other user program but also from the operating system.
摘要:
In a microprocessor, a program key for decrypting a program and a data key for encrypting/decrypting data processed by the program are handled as cryptographically inseparable pair inside the microprocessor, so that it becomes possible for the microprocessor to protect processes that actually execute the program, without an intervention of the operating system, and it becomes possible to conceal secret information of the program not only from the other user program but also from the operating system.
摘要:
In a microprocessor, a program key for decrypting a program and a data key for encrypting/decrypting data processed by the program are handled as cryptographically inseparable pair inside the microprocessor, so that it becomes possible for the microprocessor to protect processes that actually execute the program, without an intervention of the operating system, and it becomes possible to conceal secret information of the program not only from the other user program but also from the operating system.
摘要:
In the method for sharing encrypted data region among two or more processes on a tamper resistant processor, one process creates the encrypted data region to be shared according to the common key generated as a result of the safe key exchange, and the other process maps that region to its own address space or process space. The address information of the shared encrypted data region and the common key of each process are set in relation in the encrypted attribute register inside the tamper resistant processor, so that it is possible to share the encrypted data region safely.
摘要:
In the method for sharing encrypted data region among two or more processes on a tamper resistant processor, one process creates the encrypted data region to be shared according to the common key generated as a result of the safe key exchange, and the other process maps that region to its own address space or process space. The address information of the shared encrypted data region and the common key of each process are set in relation in the encrypted attribute register inside the tamper resistant processor, so that it is possible to share the encrypted data region safely.
摘要:
In a microprocessor that internally has a microprocessor specific secret key, a key management unit is provided to carry out a key registration for reading out from an external memory a distribution key that is obtained in advance by encrypting the instruction key by using a public key corresponding to the secret key, decrypting the distribution key by using the secret key to obtain the instruction key, and registering the instruction key in correspondence to a specific program identifier for identifying the program into a key table, and to notify a completion of the key registration to the processor core asynchronously by interruption when the key registration is completed.
摘要:
Under a multi-task environment, a tamper resistant microprocessor saves a context information for one program whose execution is to be interrupted, where the context information contains information indicating an execution state of that one program and the execution code encryption key of that one program. An execution of that one program can be restarted by recovering the execution state of that one program from the saved context information. The context information can be encrypted by using the public key of the microprocessor, and then decrypted by using the secret key of the microprocessor.
摘要:
Under a multi-task environment, a tamper resistant microprocessor saves a context information for one program whose execution is to be interrupted, where the context information contains information indicating an execution state of that one program and the execution code encryption key of that one program. An execution of that one program can be restarted by recovering the execution state of that one program from the saved context information. The context information can be encrypted by using the public key of the microprocessor, and then decrypted by using the secret key of the microprocessor.
摘要:
A scheme for distributing executable programs through a network from a program distribution device to a client device having a tamper resistant processor which is provided with a unique secret key and a unique public key corresponding to the unique secret key in advance is disclosed. In this scheme, a first communication path is set up between the program distribution device and the client device, and a second communication path directly connecting the program distribution device and the tamper resistant processor is set up on the first communication path. Then, the encrypted program is transmitted from the program distribution device to the tamper resistant processor through the second communication path.
摘要:
Under a multi-task environment, a tamper resistant microprocessor saves a context information for one program whose execution is to be interrupted, where the context information contains information indicating an execution state of that one program and the execution code encryption key of that one program. An execution of that one program can be restarted by recovering the execution state of that one program from the saved context information. The context information can be encrypted by using the public key of the microprocessor, and then decrypted by using the secret key of the microprocessor.