Apparatus and method for measuring flatness of thin plate
    1.
    发明授权
    Apparatus and method for measuring flatness of thin plate 失效
    测量薄板平整度的装置和方法

    公开(公告)号:US06710883B2

    公开(公告)日:2004-03-23

    申请号:US10140883

    申请日:2002-05-09

    IPC分类号: G01B902

    CPC分类号: G01B11/2441 G01B11/306

    摘要: The invention measures a thickness variation at a high accuracy around a wide range of a thin plate by a comparatively large spot diameter between 0.5 mm and 2 mm. A polarization beam splitter separating a laser beam emitted from a laser generator and transmitting through an isolator into a measurement light and a reference light is provided. A quarter wavelength plate is provided between the polarization beam splitter and a measurement surface, and between the polarization beam splitter and a reference surface. A focusing and reflecting means for focusing and reflecting the measurement light reflected by the measurement surface and reflected by the polarization beam splitter, and the reference light reflecting by the reference surface and transmitting through the polarization beam splitter is provided. A half mirror reflecting the measurement light and the reference light which return from the polarization beam splitter is provided. A light receiving portion receiving the measurement light and the reference light which are reflected by the half mirror so as to interfere, converting an interference light intensity change into an electric signal, and counting the electric signal so as to measure a flatness of the measurement surface is provided.

    摘要翻译: 本发明通过0.5mm至2mm之间的较大的光点直径来测量薄板宽范围内的高精度的厚度变化。 提供了将从激光发生器发射的激光束分离并通过隔离器传输到测量光和参考光的偏振分束器。 四分之一波长板设置在偏振分束器和测量表面之间以及偏振分束器与参考表面之间。 提供了用于聚焦和反射由测量表面反射并由偏振分束器反射的测量光以及由参考表面反射并通过偏振分束器透射的参考光的聚焦和反射装置。 提供了反射从偏振分束器返回的测量光和参考光的半反射镜。 接收由半反射镜反射的测量光和参考光的光接收部分,其干涉,将干涉光强度变化转换成电信号,并对电信号进行计数,以便测量测量表面的平坦度 被提供。

    Configuration measuring apparatus and method
    2.
    发明授权
    Configuration measuring apparatus and method 失效
    配置测量装置和方法

    公开(公告)号:US06934036B2

    公开(公告)日:2005-08-23

    申请号:US10140815

    申请日:2002-05-09

    摘要: Arranged on both sides of a thin plate are optical displacement gauges that irradiate measurement lights onto surfaces of the thin plate and receive the measurement lights reflected by the surface so as to measure displacements of the surfaces of the thin plate. Variation of thickness of the thin plate is obtained on the basis of the displacements of the surfaces of the thin plate measured by each of the optical displacement gauges. Each of the optical displacement gauges detects the displacement of a respective surface of the thin plate with high accuracy by irradiating the measurement light to the thin plate two times.

    摘要翻译: 在薄板的两侧排列的是光学位移计,其将测量光照射到薄板的表面上,并接收由表面反射的测量光,以测量薄板表面的位移。 基于由每个光学位移计测量的薄板的表面的位移,获得薄板厚度的变化。 每个光学位移计通过将测量光照射到薄板两次来高精度地检测薄板的各个表面的位移。

    Method and apparatus for transferring a thin plate
    4.
    发明授权
    Method and apparatus for transferring a thin plate 失效
    传递薄板的方法和装置

    公开(公告)号:US07029224B2

    公开(公告)日:2006-04-18

    申请号:US10384791

    申请日:2003-03-11

    IPC分类号: B25J17/02

    摘要: A method for transferring a thin plate is provided, in which three or more grasping claws of a transfer arm grasp the periphery of the thin plate in order to transfer it to a predetermined transfer position, and three or more holding claws hold the periphery of the thin plate in the transfer position. The transfer arm rotates about a shaft which is in a direction of a vector sum of a first vector perpendicular to a surface of the thin plate before transfer, and a second vector perpendicular to the surface of the thin plate after the transfer, to transfer the thin plate with changing the posture thereof.

    摘要翻译: 提供一种用于传送薄板的方法,其中传送臂的三个或更多个把持爪抓住薄板的周边以便将其传送到预定的传送位置,并且三个或更多个夹持爪保持 薄板处于转移位置。 传送臂围绕转轴旋转,该轴在转印之前沿垂直于薄板的表面的第一矢量的矢量方向和在转印之后垂直于薄板表面的第二矢量转动, 改变其姿势的薄板。

    Profilometer and method for measuring, and method for manufacturing object of surface profiling
    5.
    发明授权
    Profilometer and method for measuring, and method for manufacturing object of surface profiling 有权
    曲面测量仪和测量方法,以及表面成型对象的制造方法

    公开(公告)号:US06763319B2

    公开(公告)日:2004-07-13

    申请号:US10159565

    申请日:2002-05-31

    IPC分类号: G01B1124

    CPC分类号: G01B5/012

    摘要: A stylus having a curvature radius of 1 mm or less is attached to the extremity of a probe. When the profile of an object is measured with high precision by causing the stylus to follow a measurement surface of the object, a reference ball for calibration is first measured, thereby surface profiling the object. From the measurement data, a contact position where the stylus contacts with the object is determined. A positional error caused by a curvature radius of the stylus is corrected by using an angle of inclination of the measurement surface in that contact position. The amount of profile error in the contact position is extracted by using the profile error data pertaining to the stylus determined by measurement of the reference ball. The amount of profile error is added to the measurement data, thereby correcting the profile error caused by the curvature radius of the stylus.

    摘要翻译: 将具有1mm或更小的曲率半径的触针连接到探针的末端。 当通过使触针跟随对象的测量表面来高精度地测量对象的轮廓时,首先测量用于校准的参考球,从而对对象进行表面轮廓。 从测量数据确定触针与对象接触的接触位置。 通过使用在该接触位置的测量表面的倾斜角来校正由触针的曲率半径引起的位置误差。 通过使用与通过测量参考球确定的触控笔有关的简档误差数据来提取接触位置中的轮廓误差量。 轮廓误差量被添加到测量数据中,从而校正由触针的曲率半径引起的轮廓误差。

    Shape measuring apparatus and method
    6.
    发明授权
    Shape measuring apparatus and method 失效
    形状测量装置及方法

    公开(公告)号:US6026583A

    公开(公告)日:2000-02-22

    申请号:US988397

    申请日:1997-12-10

    IPC分类号: G01B11/00 G01B11/24

    CPC分类号: G01B11/005 G01B11/24

    摘要: A shape measuring apparatus includes an object measuring device, a holding base, a reference plane measuring device, and a length measuring unit. The holding base holds an object-to-be-measured on its surface and has a reference plane provided on its back side so that a measured surface of the object and the reference plane can be simultaneously scanned by the object measuring device and the reference plane measuring device, respectively. Therefore, the object and the reference plane can sway integrally with each other, and the accuracy of measurement of the measured surface is not influenced by any moving straightness deviation of the holding base unless any change occurs in relative positions of the reference plane and the measured surface. Therefore, the shape of the measured surface can be measured with the flatness accuracy of the reference plane.

    摘要翻译: 一种形状测量装置,包括物体测量装置,保持基座,基准平面测量装置和长度测量单元。 保持基座在其表面上保持要测量的物体,并且具有设置在其背面的参考平面,使得物体和参考平面的测量表面可以被物体测量装置和参考平面同时扫描 测量装置。 因此,物体和参考平面可以彼此一体摆动,并且测量表面的测量精度不受保持基座的任何移动直线度偏差的影响,除非在参考平面的相对位置和测量的相对位置发生变化 表面。 因此,可以用参考平面的平坦度精度来测量被测表面的形状。

    Three-dimensional measurement probe
    7.
    发明授权
    Three-dimensional measurement probe 有权
    三维测量探头

    公开(公告)号:US07520067B2

    公开(公告)日:2009-04-21

    申请号:US11979034

    申请日:2007-10-30

    IPC分类号: G01B5/012

    摘要: A three-dimensional measurement probe that is less likely to break, that is of long lifespan, and that is of low cost, capable of measuring the shape and the like of a measuring object such as an aspheric lens with higher precision is realized. A magnetic force for preventing rotation and axial displacement of a small slidably moving shaft part is generated by constructing a magnetic circuit by a magnet attached to a small air bearing part, a yoke, and a magnetic pin attached to the small slidably moving shaft part. The three-dimensional measurement probe is able to perform measurement from below and from the side since the magnetic force is non-contacting.

    摘要翻译: 实现了能够测量诸如非球面透镜的测量对象的形状等能够更高精度的三维测量探头,该三维测量探头不太可能断裂,寿命长,成本低。 用于防止小的可滑动移动的轴部的旋转和轴向位移的磁力通过由安装在小型空气轴承部分上的磁体构成磁路而产生磁轭,磁轭和安装在小滑动轴部分上的磁性销。 由于磁力不接触,三维测量探头能够从下方和侧面进行测量。

    Configuration measuring method and apparatus for optically detecting a
displacement of a probe due to an atomic force
    8.
    发明授权
    Configuration measuring method and apparatus for optically detecting a displacement of a probe due to an atomic force 失效
    用于光学地检测由原子力引起的探头位移的配置测量方法和装置

    公开(公告)号:US5616916A

    公开(公告)日:1997-04-01

    申请号:US563071

    申请日:1995-11-27

    摘要: Substantially collimated displacement detection light is led to a first lens and condensed by the first lens to proximities to a reflecting surface of a probe. The reflected light is displaced by an atomic force acting against a surface of a sample, where the reflected light varies in reflection angle according to the displacement. The displaced light is lead to the first lens, changed in direction by a mirror, and detected by magnifying the displacement of the probe. The detection further includes steps of moving a Z direction scan block in a direction vertical to the sample surface by a Z direction driving device, the Z direction scan block having the first lens and the probe, moving an X direction scan block in a first axial direction within a plane parallel to the sample surface by an X direction driving device, the X direction scan block having the Z direction scan block, the Z direction driving device, and the mirror, and moving a Y direction scan block by a Y direction driving device in a second axial direction perpendicular to the first axial direction within a plane parallel to the sample surface, the Y direction scan block having the X direction scan block, the X direction driving device, the detection light radiation system, and the displacement detection system.

    摘要翻译: 基本上准直的位移检测光被引导到第一透镜,并且被第一透镜聚光到探针的反射表面。 反射光被作用在样品表面上的原子力移位,其中反射光根据位移以反射角度变化。 偏移的光线通过第一透镜,通过镜子改变方向,并且通过放大探针的位移来检测。 该检测还包括以下步骤:通过Z方向驱动装置使Z方向扫描块沿垂直于样品表面的方向移动,Z方向扫描块具有第一透镜和探头,沿X方向扫描块移动第一轴向 通过X方向驱动装置在与样品表面平行的平面内的方向,具有Z方向扫描块的X方向扫描块,Z方向驱动装置和反射镜,并且通过Y方向驱动来移动Y方向扫描块 在垂直于第一轴向的第二轴向方向的平面内的装置,具有X方向扫描块的Y方向扫描块,X方向驱动装置,检测光辐射系统和位移检测系统 。

    Measurement probe and using method for the same
    9.
    发明授权
    Measurement probe and using method for the same 失效
    测量探头和使用方法相同

    公开(公告)号:US07065893B2

    公开(公告)日:2006-06-27

    申请号:US11014947

    申请日:2004-12-20

    IPC分类号: G01B5/00

    CPC分类号: G01B3/008 G01B5/012 G01B7/002

    摘要: A measuring probe for obtaining positional information on a measuring target face has: a movable member having a contact portion which is formed in its top and comes into contact with the measuring target face and a reflecting plane formed on its base end for reflecting a measuring light beam; a magnetic substance mounted on the movable member; a fixed member disposed in a fixed state; a bearing provided on the fixed member for supporting the movable member movably in axis line direction; and a magnetic force generating portion provided on the fixed member for generating force acting upon the magnetic substance to move the movable member in the axis line direction. The movable member is formed from a nonmagnetic material, and the bearing and the fixed member are formed from a magnetic material.

    摘要翻译: 用于获得测量目标面上的位置信息的测量探针具有:具有形成在其顶部并与测量对象面接触的接触部分的可动部件和形成在其基端的用于反射测量光的反射面 光束; 安装在可动件上的磁性物质; 以固定状态设置的固定部件; 设置在所述固定构件上用于沿轴线方向可移动地支撑所述可动构件的轴承; 以及磁力产生部,其设置在所述固定部件上,用于产生作用在所述磁性物质上的力,以使所述可动部件沿所述轴线方向移动。 可动构件由非磁性材料形成,并且轴承和固定构件由磁性材料形成。

    Three-dimensional measurement probe
    10.
    发明申请
    Three-dimensional measurement probe 有权
    三维测量探头

    公开(公告)号:US20080148588A1

    公开(公告)日:2008-06-26

    申请号:US11979034

    申请日:2007-10-30

    IPC分类号: G01B5/008

    摘要: A three-dimensional measurement probe that is less likely to break, that is of long lifespan, and that is of low cost, capable of measuring the shape and the like of a measuring object such as an aspheric lens with higher precision is realized. A magnetic force for preventing rotation and axial displacement of a small slidably moving shaft part is generated by constructing a magnetic circuit by a magnet attached to a small air bearing part, a yoke, and a magnetic pin attached to the small slidably moving shaft part. The three-dimensional measurement probe is able to perform measurement from below and from the side since the magnetic force is non-contacting.

    摘要翻译: 实现了能够测量诸如非球面透镜的测量对象的形状等能够更高精度的三维测量探头,该三维测量探头不太可能断裂,寿命长,成本低。 用于防止小的可滑动移动的轴部的旋转和轴向位移的磁力通过由安装在小型空气轴承部分上的磁体构成磁路而产生磁轭,磁轭和安装在小滑动轴部分上的磁性销。 由于磁力不接触,三维测量探头能够从下方和侧面进行测量。