摘要:
A viscoelasticity improving agent for rubber obtained by reacting an alkyllithium compound with a free radical compound having an isocyanate group in the molecule thereof and existing stably at room temperature in the presence of oxygen and a rubber composition.
摘要:
A transient response of a tire is simulated by using a effective data of a physical amount. The physical amount is set as a rolling condition of the tire and varies in time. The effective data of the physical amount is calculated by a convolution integral of a response function of an introduced first-order lag response and a time gradient of time-series data of the physical amount. In a tire model determining method, a time constant of a response function of the first-order lag response is determined from measured transient response data. In a tire transient response data calculating method, a transient response data is calculated by using the effective data of the physical amount which is calculated by using a desired physical amount and the first-order lag response.
摘要:
The tire transient response data obtained while cornering with a slip angle is calculated based on a tire dynamic model. The deformation response of a tread part in the tire dynamic is set as a first-order-lag response. The value of the transient response parameter is initialized in order to define the first-order-lag response. The time-series data of the transient response of the slip angle between the tread part and the road surface in the tire dynamic model is obtained by computing the convolution integral of the defined response function of the first-order-lag response with a time gradient of the time-series data of the slip angle. The value of a lateral force is calculated by using the tire dynamic model based on the time-series data of the transient response of the slip angle thus obtained. Accordingly, the transient response data is calculated and the value of the transient response parameter is obtained.
摘要:
A method of calculating a cornering force to be applied to each wheel provided to a vehicle which is cornering, comprising the steps of: obtaining a magnitude of a centrifugal force to the vehicle in a direction substantially orthogonal to a vehicle traveling direction, a contact length of each wheel during the cornering of the vehicle, and an amount of deformation in a wheel width direction at the contact portion of each wheel of the vehicle, calculating a difference between the obtained amount of the deformation and an amount of deformation in the wheel width direction under a straight forward travel condition of the vehicle for each wheel, and calculating a cornering force for each wheel based on the magnitude of the centrifugal force, the contact length, and the difference between amounts of deformation in the wheel width direction.
摘要:
A method of calculating deflection of a rotating tire, through high speed data processing, based on measurement time series data of acceleration on a tire tread portion has the following steps. A step of acquiring measurement time series data of acceleration on a tire circumference in a radial direction of a rotating tire; a step of extracting acceleration data in a vicinity of a contact region from the acquired measurement data and subjecting the extracted acceleration data to least-square regression using a second-order differential function expression of a deflection function expression that represents a peak shape having a peak value and a curve gradually approaching to zero on both sides thereof, whereby a deflection function parameter values are determined; and a step of calculating a contact deflection from the deflection function expression determined by the deflection function parameter values.
摘要:
Values of multiple tire dynamic element parameters are set for a tire dynamic model constructed using the tire dynamic element parameters for calculating a tire axial force and a self-aligning torque under a given slip ratio. Next, the values of the tire axial force and the self-aligning torque are calculated using the tire dynamic model and output. The tire dynamic model allows a center position of a contact patch thereof against a road surface to move in accordance with a longitudinal force that occurs as the tire axial force when a slip ratio in a braking/driving direction is given so that a position of the contact patch moves in a longitudinal direction due to the longitudinal force. When designing a vehicle or when designing a tire, the tire dynamic model is used.
摘要:
In a prediction of abrasion characteristic of a tire, a characteristic curve of a tire axis force generated on a tire rotation axis at the slip ratio applied to the tire and changed depending upon the slip ratio is acquired. From the characteristic curve, values of tire dynamic element parameters determining the characteristic curve are derived based on a tire dynamic model constituted by the tire dynamic element parameters. Furthermore, a tire sliding amount based on a sliding region, the sliding region and an adhesive region formed on the contact patch of the tire at the applied slip ratio are calculated by applying the values of the tire dynamic element parameters to the model. Lastly, an abrasion characteristic of a tread part of the tire at the applied slip ratio is predicted by using the tire sliding amount with abrasion characteristic data of a tread rubber of the tread part. According to the prediction results, a tire is designed and produced.
摘要:
An acceleration sensor-attached tire is provided which can detect acceleration in one arbitrary direction, in two or more directions where vectors are linearly independent of each other, or in two or more directions where vectors of the detected acceleration cross each other generated in a tire in a practical velocity range. A sensor unit 100 is embedded inside a tire, and the acceleration in three directions crossing each other and generated in the tire 300 is detected by an acceleration sensor provided in this sensor unit, and the detected acceleration is transmitted. The acceleration sensor is a micro electro mechanical systems (MEMS) type sensor and comprises a semiconductor acceleration sensor.
摘要:
An apparatus and method acquires acceleration data in a time series of a predetermined site of the tire during traveling of the vehicle, and removes an acceleration component due to a deformation of the tire from the acquired acceleration data to obtain a modified acceleration data, and performs frequency analysis of the modified acceleration data to obtain a frequency spectrum, and obtains an accumulated value of the frequency spectrum, and calculating a braking distance parameter for predicting a braking distance based on the obtained accumulated value, and obtains a predicted value of the braking distance of the vehicle based on the braking distance parameter calculated in the calculating part.
摘要:
A transient response of a tire is simulated by using a effective data of a physical amount. The physical amount is set as a rolling condition of the tire and varies in time. The effective data of the physical amount is calculated by a convolution integral of a response function of an introduced first-order lag response and a time gradient of time-series data of the physical amount. In a tire model determining method, a time constant of a response function of the first-order lag response is determined from measured transient response data. In a tire transient response data calculating method, a transient response data is calculated by using the effective data of the physical amount which is calculated by using a desired physical amount and the first-order lag response.