MOSFET with reduced short channel effect
    2.
    发明授权
    MOSFET with reduced short channel effect 失效
    具有减少短沟道效应的MOSFET

    公开(公告)号:US4819043A

    公开(公告)日:1989-04-04

    申请号:US936604

    申请日:1986-12-01

    摘要: An MOSFET provided with a gate insulating film formed on a semiconductor surface between a source region and a drain region, a gate electrode formed on the gate insulating film, and a channel region sandwiched between the source region and the drain region and made up of a first layer and a second layer is disclosed in which the first layer lies beneath the gate insulating film and is opposite in conductivity type to the source and drain regions, the second layer lies beneath the first layer and has the same conductivity type as the source and drain regions, and the length of the second layer between the source region and the drain region is greater than the length of the first layer between the source region and the drain region.

    摘要翻译: 在栅极绝缘膜上形成的半导体表面上形成有栅极绝缘膜的MOSFET,栅极绝缘膜上形成的栅极电极以及夹在源极区域与漏极区域之间的沟道区域,由 公开了第一层和第二层,其中第一层位于栅极绝缘膜的下方并且与源极和漏极区的导电类型相反,第二层位于第一层之下并且具有与源相同的导电类型, 漏极区域,并且源极区域和漏极区域之间的第二层的长度大于源极区域和漏极区域之间的第一层的长度。

    Learning apparatus and method, image processing apparatus and method, program, and recording medium
    3.
    发明授权
    Learning apparatus and method, image processing apparatus and method, program, and recording medium 有权
    学习装置和方法,图像处理装置和方法,程序和记录介质

    公开(公告)号:US08913822B2

    公开(公告)日:2014-12-16

    申请号:US13433606

    申请日:2012-03-29

    IPC分类号: G06K9/36 G06K9/40 G06T3/40

    摘要: There is provided an image processing apparatus including a model-based processing unit that executes model-based processing for converting resolution and converting an image on the basis of a camera model and a predetermined model having aligning, with respect to a high-resolution image output one frame before, and a prediction operation unit that performs a prediction operation on a pixel value of a high-resolution image to be output, on the basis of parameters stored in advance, an observed low-resolution image that is an input low-resolution image, and an image obtained by executing the model-based processing.

    摘要翻译: 提供了一种图像处理装置,包括:基于模型的处理单元,其基于相机模型和相对于高分辨率图像输出对准的预定模型执行基于模型的处理,用于转换分辨率和转换图像 基于预先存储的参数,对作为输出的低分辨率图像的低分辨率图像进行预测运算的预测运算部, 图像和通过执行基于模型的处理获得的图像。

    IMAGE PROCESSING DEVICE, IMAGE PROCESSING METHOD, PROGRAM AND RECORDING MEDIUM
    4.
    发明申请
    IMAGE PROCESSING DEVICE, IMAGE PROCESSING METHOD, PROGRAM AND RECORDING MEDIUM 审中-公开
    图像处理装置,图像处理方法,程序和记录介质

    公开(公告)号:US20130016920A1

    公开(公告)日:2013-01-17

    申请号:US13543075

    申请日:2012-07-06

    IPC分类号: G06K9/32

    CPC分类号: G06T3/4053

    摘要: Provided is an image processing device including a model-based processing portion that generates an estimated low resolution image from a high resolution image, using an observation model that performs motion compensation processing and down-sampling processing, a feature amount calculation portion that calculates a feature amount of at least one of a spatial feature amount and a temporal feature amount from one of an observed low resolution image, which is a low resolution image that is actually observed, and the high resolution image, and a prediction operation portion that predicts and generates an image with higher image quality based on the high resolution image, using a parameter which corresponds to the calculated feature amount and which is obtained from the observed low resolution image, from the estimated low resolution image and from learning that is performed in advance.

    摘要翻译: 提供了一种图像处理装置,其特征量计算部分包括:基于模型的处理部分,其使用执行运动补偿处理和下采样处理的观察模型从高分辨率图像生成估计的低分辨率图像;特征量计算部分, 以及作为实际观察到的低分辨率图像的观察低分辨率图像和高分辨率图像之一的空间特征量和时间特征量中的至少一个的量和预测和生成的预测操作部分 基于高分辨率图像具有较高图像质量的图像,使用与所计算的特征量相对应的参数,并且从所观察到的低分辨率图像获得的参考值与所估计的低分辨率图像和预先执行的学习相对应。

    IMAGE PROCESSING APPARATUS AND METHOD, PROGRAM, AND RECORDING MEDIUM
    5.
    发明申请
    IMAGE PROCESSING APPARATUS AND METHOD, PROGRAM, AND RECORDING MEDIUM 审中-公开
    图像处理装置和方法,程序和记录介质

    公开(公告)号:US20120321214A1

    公开(公告)日:2012-12-20

    申请号:US13463274

    申请日:2012-05-03

    IPC分类号: G06K9/40

    摘要: Provided is an image processing apparatus including a sharpness improvement feature quantity calculation unit for calculating a sharpness improvement feature quantity of a pixel-of-interest, which is a feature quantity of sharpness improvement of a pixel-of-interest, according to a product-sum operation on pixel values of a plurality of peripheral pixels around a pixel of an input image corresponding to the pixel-of-interest, strengths of band limitation and noise addition, and filter coefficients corresponding to phases of the pixel-of-interest and the peripheral pixels, by designating a pixel of a prediction image as the pixel-of-interest when an image subjected to high image-quality processing is output as the prediction image, and a prediction calculation unit for calculating a prediction value of the pixel-of-interest by calculating a prediction expression defined by a product-sum operation on the sharpness improvement feature quantity and a prediction coefficient pre-obtained by learning.

    摘要翻译: 提供了一种图像处理装置,其包括:锐度改善特征量计算单元,用于根据产品特性量计算单元计算作为感兴趣像素的锐度改善的特征量的兴趣像素的锐度改善特征量; 对与感兴趣像素对应的输入图像的像素周围的多个周边像素的像素值进行和运算,频带限制和噪声添加的强度以及对应于感兴趣像素的相位的滤波器系数 周边像素,通过将输出高图像质量处理的图像作为预测图像输出,将预测图像的像素指定为感兴趣像素,以及预测计算单元,计算像素的像素的预测值 通过计算由锐积度改善特征量和预先获得的预测系数的乘积和运算定义的预测表达式来计算兴趣 学习。

    Learning device, learning method, and learning program
    6.
    发明授权
    Learning device, learning method, and learning program 失效
    学习设备,学习方法和学习方案

    公开(公告)号:US07940993B2

    公开(公告)日:2011-05-10

    申请号:US11722141

    申请日:2005-12-21

    IPC分类号: G06K9/40 G06K9/00 H04N5/228

    CPC分类号: H04N5/21 H04N5/142 H04N5/144

    摘要: A motion-setting section (61) sets a motion amount and a motion direction for obtaining processing coefficients. A student-image-generating section (62) generates student images obtained by adding a motion blur to a teacher image not only based on the set motion amount and the set motion direction but also by changing at least one of the motion amount and motion direction in a specific ratio and student images obtained by adding no motion blur to the teacher image. A prediction-tap-extracting section (64) extracts, in order to extract a main term that mainly contains component of the target pixel, at least a pixel value of pixel in the student image whose space position roughly agrees with space position of the target pixel in the teacher image. A processing-coefficient-generating section (65) generates processing coefficients for predicting the target pixels in the teacher images from the pixel values of extracted pixels based on a relationship between the pixels thus extracted and the target pixels in the teacher images. The processing coefficients that are suitable for any motion blur removing which is robust against any shift of the motion vector can be generated through learning.

    摘要翻译: 运动设定部(61)设定用于获得处理系数的运动量和运动方向。 学生图像生成部(62)生成不仅基于设定的运动量和设定的运动方向而将运动模糊添加到教师图像而获得的学生图像,而且通过改变运动量和运动方向中的至少一个 以特定比例和学生图像通过添加没有运动模糊获得的教师图像。 预测抽头部(64)为了提取主要包含目标像素的成分的主项,提取学生图像中的空间位置大致与目标的空间位置一致的像素的像素值 像素在老师的形象。 处理系数生成部(65)基于所提取的像素与教师图像中的目标像素之间的关系,从提取的像素的像素值生成用于预测教师图像中的目标像素的处理系数。 可以通过学习来产生适用于对运动矢量的任何移动而鲁棒的任何运动模糊去除的处理系数。