摘要:
A lithium-ion secondary battery where a current collecting member and a foil are joined to each other securely while damage of the foil is suppressed is provided. The lithium-ion secondary battery is provided with a winding group obtained by winding a positive electrode plate and a negative electrode plate via a separator. An end portion of a positive electrode mixture non-application portion and an end portion of a negative electrode mixture non-application portion project at an upper portion and a lower portion of the winding group, respectively. Current collecting disks 7 are disposed so as to face both end faces of the winding group, respectively. The current collecting disk 7 has projecting ridge portions 8 on a face thereof opposite to the winding group and flat face portions facing the winding group at positions corresponding to the projecting ridge portions 8. The projecting ridge portions 8 are formed radially. The end portion of the positive electrode mixture non-application portion and the end portion of the negative electrode mixture non-application portion are caused to abut on the flat face portions of the current collecting disks 7 and joining is performed by irradiating the projecting ridge portions 8 with laser beam. The flat face portions of the current collecting disks 7 abut on the end portion of the positive electrode mixture non-application portion and the end portion of the negative electrode mixture non-application portion approximately evenly.
摘要:
A lithium ion secondary battery comprises a case; a positive electrode foil having a current collector foil on which a positive electrode material is coated; an negative electrode film having a current collector film on which an negative electrode material is coated; a separator sandwiched between the positive electrode film and the negative electrode film, the films and the separator being arranged in multiple layers to form a group of electrodes enclosed in the case, a positive collector disc plate connected to the positive electrode side of the group of the electrodes, and an negative collector disc plate connected to the negative electrode side of the group of the electrodes. Each of the current collector foils has a non-coated portion extended along one side of the foils, a part or the entire of the non-coated portion being exposed from a side of the separator. At least one of the collector disc plate is welded to the side of the exposed non-coated portion of the group of the electrodes. The periphery of the collector disc plate has an annular portion, which is bent towards the group of electrodes.
摘要:
A lithium ion secondary battery comprises a case; a positive electrode foil having a current collector foil on which a positive electrode material is coated; an negative electrode film having a current collector film on which an negative electrode material is coated; a separator sandwiched between the positive electrode film and the negative electrode film, the films and the separator being arranged in multiple layers to form a group of electrodes enclosed in the case, a positive collector disc plate connected to the positive electrode side of the group of the electrodes, and an negative collector disc plate connected to the negative electrode side of the group of the electrodes. Each of the current collector foils has a non-coated portion extended along one side of the foils, a part or the entire of the non-coated portion being exposed from a side of the separator. At least one of the collector disc plate is welded to the side of the exposed non-coated portion of the group of the electrodes. The periphery of the collector disc plate has an annular portion, which is bent towards the group of electrodes.
摘要:
In a secondary battery, for providing a structure which can enable a welding operation even when a gap is formed between a current collecting plate and a winding assembly, recessed portions are formed in a positive current collecting plate. The recessed portions are disposed opposite to the winding assembly. A laser beam is irradiated to welding protrusions located between the recessed portions to melt the welding protrusions. Here, since the end surface of a positive electrode foil is uneven in height, the positive electrode foil does not contact the positive current collecting plate necessarily. The welding operation is performed by heating, melting, and dropping the welding protrusions by the use of a YAG laser under the welding condition of a laser power of 900 W and a welding speed 2 m/min.
摘要:
In a secondary battery, for providing a structure which can enable a welding operation even when a gap is formed between a current collecting plate and a winding assembly, recessed portions are formed in a positive current collecting plate. The recessed portions are disposed opposite to the winding assembly. A laser beam is irradiated to welding protrusions located between the recessed portions to melt the welding protrusions. Here, since the end surface of a positive electrode foil is uneven in height, the positive electrode foil does not contact the positive current collecting plate necessarily. The welding operation is performed by heating, melting, and dropping the welding protrusions by the use of a YAG laser under the welding condition of a laser power of 900 W and a welding speed 2 m/min.
摘要:
In a secondary battery, for providing a structure which can enable a welding operation even when a gap is formed between a current collecting plate and a winding assembly, recessed portions are formed in a positive current collecting plate. The recessed portions are disposed opposite to the winding assembly. A laser beam is irradiated to welding protrusions located between the recessed portions to melt the welding protrusions. Here, since the end surface of a positive electrode foil is uneven in height, the positive electrode foil does not contact the positive current collecting plate necessarily. The welding operation is performed by heating, melting, and dropping the welding protrusions by the use of a YAG laser under the welding condition of a laser power of 900 W and a welding speed 2 m/min.
摘要:
The present invention provides a lithium-ion secondary battery which can suppress internal resistance to a small value. The lithium-ion secondary battery includes a winding group obtained by winding a positive electrode plate and a negative electrode plate via a separator. An end portion of a positive electrode mixture non-application portion 1 projects at an upper portion of the winding group, while an end portion of a negative electrode mixture non-application portion projects at a lower portion of the winding group. Current collecting disks 7 are disposed on both end faces of the winding group so as to face them, respectively, and materials for the current collecting disks are the same materials as those for a positive electrode current collector and a negative electrode current collector. An end portion of the positive electrode mixture non-application portion 1 is joined to a face of the current collecting disk 7 positioned on the side of the winding group at a plurality of joint portions on the positive electrode side, while an end portion of the negative electrode mixture non-application portion is joined to a face of the current collecting disk 7 positioned on the side of the winding group at a plurality of joint portions on the negative electrode side. Some of the joint portions form joint portions taking on a width expansion shape gradually expanding from a joint end portion with the positive electrode mixture non-application portion 1 toward the current collecting disk 7. A volume of the joint portion 25 is increased.
摘要:
A magnetic field distribution measurement device (1) provides a non-contact magnetic field measurement on a subject's chest at a plurality of coordinates and forms therefrom time-series magnetic field distribution data. A first arithmetic device (2) in response generates image data representing a three-dimensional, intramyocardial current density distribution. A second arithmetic device (3) receives a plurality of tomographic image data separately obtained by a tomographic diagnosis apparatus and processes the data to generate three-dimensional, anatomical image data. A display device (4) receives these data and displays on an anatomical image an image representing an intramyocardial current density. This can facilitate identifying an anatomical, positional relationship of an abnormal, electrical reentry circuit caused in heart muscle. Furthermore, the anatomical image may be replaced with an image representing a normal stimulation propagation circuit and serving as a template.
摘要:
A battery pack which is constituted by a plurality of lithium secondary batteries and which can prevent performance deterioration and has a long life is provided. The battery pack is manufactured by connecting in series four lithium ion batteries in which a lithium cobaltate is used for a positive active material and an amorphous carbon is used for a negative active material. In the battery, a percentage of the difference between positive electrode charging capacity and negative electrode charging capacity to capacity of the lithium secondary battery was set to 6%. The SOC difference among the four batteries was adjusted to 6 points or less. Even a battery having a low SOC is full charged, lithium oversupplied does not exceed a lithium amount capable of being occluded by a negative electrode at a battery having a high SOC, and thereby the active material does not deteriorate.
摘要:
A cylindrical lithium-ion battery with excellent safety where abnormal heat generation and remarkable deformation of a battery container do not occur even at an abnormal time is provided. When an average diameter of a winding group 6 is A mm, an inner diameter of the battery container 5 is B mm, a longitudinal length of the winding group 6 except for lead pieces extending from the winding group 6 is H mm, and the number of windings where a layer of one unit comprising a negative electrode member/separator/negative electrode member/separator is wound around a shaft core 11 is W, a calculation value K obtained by a formula; K=(B−A)×(10000/(W×H) is set to 0.89 or more. When the calculation value K is 0.89 or more, a gap (B−A) between an outer periphery of the winding group 6 and an inner periphery of the battery container 5 that enables the winding group 6 to expand in its diameter direction at an abnormal time is properly secured.
摘要翻译:提供了即使在异常时也不会发生具有优异安全性的圆柱形锂离子电池,其中异常发热和电池容器的显着变形。 当卷绕组6的平均直径为Amm时,电池容器5的内径为Bmm,除了从卷绕组6延伸的引线片以外的卷绕组6的纵向长度为Hmm, 其中包括负极构件/隔板/负极构件/隔板的一个单元的层缠绕在轴芯11上的绕组是W,通过公式获得的计算值K; K =(BA)×(10000 /(W×H))为0.89以上,当计算值K为0.89以上时,卷绕组6的外周与电池内周之间的间隙(BA) 适当地确保使绕组6在异常时沿其直径方向膨胀的容器5。