摘要:
A defibrillator battery pack comprises a housing having a first set of battery cells having an upper set and a lower set of cells and a second set of battery cells connected in parallel with one of the upper or the lower sets of the first set of battery cells. The first set of battery cells is used for charging a capacitor bank of a defibrillator. The second set of battery cells cannot be used for charging and is only used for developing a nominal 5 volts to drive a microprocessor and other circuitry components of an electrical control system of the defibrillator. This arrangement increases the life of the battery pack in the lower voltage range, which is advantageous for operating the microprocessor. This arrangement also maintains the intelligence of the electrical control system because the battery cells supplying power to the microprocessor will always fail after, and not before, failure of the battery cells supplying power for charging the capacitor bank.
摘要:
The AED of the present invention has a housing and a removable power supply, contained within its own power supply case, that is connected to a circuit for generating a defibrillation pulse. The circuit is electrically connectale to a pair of electrodes for delivering the defibrillation pulse. the AED further includes a temperature sensing device that is mounted inside the power supply case and connected to the power supply. The temperature sensing device senses the temperature in the power supply case and enables the adjustment of the operating parameters of the AED according to the sensed temperature.
摘要:
An apparatus and method for determining an optimal transchest external defibrillation waveform that provides for variable energy in the first or second phase of a biphasic waveform that, when applied through a plurality of electrodes positioned on a patient's torso, will produce a desired response in the patient's cardiac cell membranes. The method includes the steps of providing a quantitative model of a defibrillator circuit for producing external defibrillation waveforms, the quantitative model of a patient includes a chest component, a heart component, a cell membrane component and a quantitative description of the desired cardiac membrane response function. Finally, a quantitative description of a transchest external defibrillation waveform that will produce the desired cardiac membrane response function is computed. The computation is made as a function of the desired cardiac membrane response function, the patient model and the defibrillator circuit model.
摘要:
A method for determining an optimal transchest external defibrillation waveform which, when applied through a plurality of electrodes positioned on a patient's torso will produce a desired response in the patient's cardiac cell membranes. The method includes the steps of providing a quantitative model of a defibrillator circuit for producing external defibrillation waveforms, the quantitative model of a patient includes a chest component, a heart component, a cell membrane component and a quantitative description of the desired cardiac membrane response function. Finally, a quantitative description of a transchest external defibrillation waveform that will produce the desired cardiac membrane response function is computed. The computation is made as a function of the desired cardiac membrane response function, the patient model and the defibrillator circuit model.
摘要:
A circuit detectable arrangement of electrodes and a package thereof are provided so that the presence of a fresh package of electrodes can be detected by a device and can be distinguished from electrodes that have been used or tampered with. A first electrode is disposed on an electrically non-conductive liner, a second electrode is disposed on an electrically non-conductive liner, and an electrical connector is provided between the first and second electrodes for electrically completing a circuit connecting the lead wire of the first electrode to the lead wire of the second electrode. An electrode package is also provided including the first and second electrodes therein. Within the package, the first and second electrodes are provided adjacent to one another with their backing layers generally parallel to one another and with a loop formed in the electrical connector. The loop extends across the tear line and into the interior portion of the package so that by opening the package along the tear line, the electrical connector can be broken. The electrical connector may also include a strip of tear resistant material which is positioned within the interior portion of the package. Opening of the package can be facilitated by extending the strip of tear resistant material or a portion of the electrical connector through an opening of the package to provide a gripping means. Alternatively, at least one of the lead wires can be threaded within the package through the loop and within the interior portion so as to pass through the material of the package from said interior portion and provide an easy opening feature.
摘要:
A circuit detectable arrangement of a plurality of medical electrodes is provided with each electrode having an electrically nonconductive backing layer, a layer of electrically conductive adhesive disposed on the backing layer and a lead wire extending therefrom and electrically connected with the conductive adhesive. More specifically, a first electrode is disposed on an electrically nonconductive liner, a second electrode is disposed on an electrically nonconductive liner, and an electrical connector is provided between the first and second electrodes for electrically completing a circuit connecting the lead wire of the first electrode to the lead wire of the second electrode. Preferably, the backing layers of the first and second electrodes each include a conductor portion, and the electrical connector is connected between the conductor portion of the backing layer of the first electrode and the conductor portion of the backing layer of the second electrode. The electrical connector preferably comprises a strip of flexible and electrically conductive material and may include a nonconductive tear resistant strip. Utilizing the electrode packaging above, the present invention monitors the state of the AED and the stage of a rescue. In particular, at least five stages of a rescue are monitored. These include: 1) rescue initiated; 2) preparing victim; 3) applying electrodes; 4) AED in use; and 5) rescue completed.
摘要:
An apparatus and method for determining an optimal transchest external defibrillation waveform that provides for variable energy in the first or second phase of a biphasic waveform that, when applied through a plurality of electrodes positioned on a patient's torso, will produce a desired response in the patient's cardiac cell membranes. The method includes the steps of providing a quantitative model of a defibrillator circuit for producing external defibrillation waveforms, the quantitative model of a patient includes a chest component, a heart component, a cell membrane component and a quantitative description of the desired cardiac membrane response function. Finally, a quantitative description of a transchest external defibrillation waveform that will produce the desired cardiac membrane response function is computed. The computation is made as a function of the desired cardiac membrane response function, the patient model and the defibrillator circuit model.
摘要:
A method for determining an optimal transchest external defibrillation waveform which, when applied through a plurality of electrodes positioned on a patient's torso will produce a desired response in the patient's cardiac cell membranes. The method includes the steps of providing a quantitative model of a defibrillator circuit for producing external defibrillation waveforms, the quantitative model of a patient includes a chest component, a heart component, a cell membrane component and a quantitative description of the desired cardiac membrane response function. Finally, a quantitative description of a transchest external defibrillation waveform that will produce the desired cardiac membrane response function is computed. The computation is made as a function of the desired cardiac membrane response function, the patient model and the defibrillator circuit model.
摘要:
A method and apparatus for delivering a stepped truncated damped sinusoidal external defibrillation waveform which, when applied through a plurality of electrodes positioned on a patient's torso will produce a desired response in the patient's cardiac cell membranes is provided. Further, the method and apparatus sufficiently approximates a constant current defibrillation shock pulse. The method includes the steps monitoring a patient-dependent electrical parameter and determining a duration based on the parameter determined. First and second charge storage components are then charged. A first truncating switch is then closed to discharge the first charge storage component. After a predetermined delay, a second truncating switch is closed to discharge the second charge storage component. Then, after the duration period that was calculated has expired the switches are opened to truncate the waveform. The computation of discharge duration is made as a function of the desired cardiac membrane response function, a patient model and a defibrillator circuit model.
摘要:
An apparatus for generating a waveform for use in externally defibrillating the heart of a patient includes a plurality of capacitors chargeable to respective charge potentials. A control apparatus is operatively coupled with the capacitors to sequentially interconnect the capacitors in a circuit with one another to generate the waveform. Structure including e.g. electrodes is operatively coupled with the capacitors and the control apparatus to apply the waveform to the chest of the patient. The waveform preferably includes an emulated first-phase substantially sinusoidally shaped pulse component having a first polarity. According to biphasic embodiments, the waveform also includes an emulated second-phase substantially sinusoidally shaped pulse component having a second polarity. The control apparatus preferably is constructed to truncate the emulated first-phase pulse component at a predetermined time, preferably based on a design rule used to calculate pulse duration. The design rule calculates the pulse duration to correspond to substantially the peak response of the patient's heart-cell membrane to the first-phase pulse component. Corresponding method embodiments provide additional advantages.