摘要:
Disclosed is a method and structure for forming a silicide on a silicon material. The invention places the silicon material in a vacuum environment, forms metal on the silicon material, and then heats the silicon surface and the metal without breaking the vacuum environment. The processes of forming the metal and heating the silicon can be performed simultaneously without breaking the vacuum environment to form the silicide as the metal is being deposited. After the foregoing processing, the invention can remove the silicon surface from the vacuum environment and perform additional heating of the silicon surface. The first heating process forms a monosilicide and the additional heating forms a disilicide.
摘要:
Disclosed is a method and structure for forming a silicide on a silicon material. The invention places the silicon material in a vacuum environment, forms metal on the silicon material, and then heats the silicon surface and the metal without breaking the vacuum environment. The processes of forming the metal and heating the silicon can be performed simultaneously without breaking the vacuum environment to form the silicide as the metal is being deposited. After the foregoing processing, the invention can remove the silicon surface from the vacuum environment and perform additional heating of the silicon surface. The first heating process forms a monosilicide and the additional heating forms a disilicide.
摘要:
The present invention provides a method for enhancing uni-directional diffusion of a metal during silicidation by using a metal-containing silicon alloy in conjunction with a first anneal in which two distinct thermal cycles are performed. The first thermal cycle of the first anneal is performed at a temperature that is capable of enhancing the uni-directional diffusion of metal, e.g., Co and/or Ni, into a Si-containing layer. The first thermal cycle causes an amorphous metal-containing silicide to form. The second thermal cycle is performed at a temperature that converts the amorphous metal-containing silicide into a crystallized metal rich silicide that is substantially non-etchable as compared to the metal-containing silicon alloy layer or a pure metal-containing layer. Following the first anneal, a selective etch is performed to remove any unreacted metal-containing alloy layer from the structure. A second anneal is performed to convert the metal rich silicide phase formed by the two thermal cycles of the first anneal into a metal silicide phase that is in its lowest resistance phase. A metal silicide is provided whose thickness is self-limiting.
摘要:
A method for forming a metal suicide contact for a semiconductor device includes forming a refractory metal layer over a substrate, including active and non-active area of said substrate, and forming a cap layer over the refractory metal layer. A counter tensile layer is formed over the cap layer, wherein the counter tensile layer is selected from a material such that an opposing directional stress is created between the counter tensile layer and the cap layer, with respect to a directional stress created between the refractory metal layer and the cap layer.
摘要:
The present invention provides a method for enhancing uni-directional diffusion of a metal during silicidation by using a metal-containing silicon alloy in conjunction with a first anneal in which two distinct thermal cycles are performed. The first thermal cycle of the first anneal is performed at a temperature that is capable of enhancing the uni-directional diffusion of metal, e.g., Co and/or Ni, into a Si-containing layer. The first thermal cycle causes an amorphous metal-containing silicide to form. The second thermal cycle is performed at a temperature that converts the amorphous metal-containing silicide into a crystallized metal rich silicide that is substantially non-etchable as compared to the metal-containing silicon alloy layer or a pure metal-containing layer. Following the first anneal, a selective etch is performed to remove any unreacted metal-containing alloy layer from the structure. A second anneal is performed to convert the metal rich silicide phase formed by the two thermal cycles of the first anneal into a metal silicide phase that is in its lowest resistance phase. A metal silicide is provided whose thickness is self-limiting.
摘要:
A suicide cap structure and method of fabricating a suicide cap having a low sheet resistance. The method provides a semiconductor substrate and a MOSFET structure comprising a gate insulator on the substrate, an Si-containing gate electrode on the gate insulator layer, and source/drain diffusions. Atop the gate electrode and source/drain diffusions is formed a layer of metal used in forming a silicide region atop the transistor gate electrode and diffusions; an intermediate metal barrier layer formed atop the silicide forming metal layer; and, an oxygen barrier layer formed atop the intermediate metal barrier layer. As a result of annealing the MOSFET structure, resulting formed silicide regions exhibit a lower sheet resistance. As the intermediate metal barrier layer comprises a material exhibiting tensile stress, the oxygen barrier layer may comprise a compressive material for minimizing a total mechanical stress of the cap structure and underlying layers during the applied anneal.
摘要:
A silicide cap structure and method of fabricating a silicide cap having a low sheet resistance. The method provides a semiconductor substrate and a MOSFET structure comprising a gate insulator on the substrate, an Si-containing gate electrode on the gate insulator layer, and source/drain diffusions. Atop the gate electrode and source/drain diffusions is formed a layer of metal used in forming a silicide region atop the transistor gate electrode and diffusions; an intermediate metal barrier layer formed atop the silicide forming metal layer; and, an oxygen barrier layer formed atop the intermediate metal barrier layer. As a result of annealing the MOSFET structure, resulting formed silicide regions exhibit a lower sheet resistance. As the intermediate metal barrier layer comprises a material exhibiting tensile stress, the oxygen barrier layer may comprise a compressive material for minimizing a total mechanical stress of the cap structure and underlying layers during the applied anneal.
摘要:
A method for reducing dendrite formation in a self-aligned, silicide process for a semiconductor device includes forming a silicide metal layer over a semiconductor substrate, the semiconductor device having one or more diffusion regions, one or more isolation areas and one or more gate structures formed thereon. The concentration of metal rich portions of the metal layer is reduced through the introduction of silicon thereto, and the semiconductor device is annealed.
摘要:
A method and apparatus are provided in which non-directional and directional metal (e.g. Ni) deposition steps are performed in the same process chamber. A first plasma is formed for removing material from a target; a secondary plasma for increasing ion density in the material is formed in the interior of an annular electrode (e.g. a Ni ring) connected to an RF generator. Material is deposited non-directionally on the substrate in the absence of the secondary plasma and electrical biasing of the substrate, and deposited directionally when the secondary plasma is present and the substrate is electrically biased. Nickel silicide formed from the deposited metal has a lower gate polysilicon sheet resistance and may have a lower density of pipe defects than NiSi formed from metal deposited in a solely directional process, and has a lower source/drain contact resistance than NiSi formed from metal deposited in a solely non-directional process.
摘要:
Disclosed is a structure and method for tuning silicide stress and, particularly, for developing a tensile silicide region on a gate conductor of an n-FET in order to optimize n-FET performance. More particularly, a first metal layer-protective cap layer-second metal layer stack is formed on an n-FET structure. However, prior to the deposition of the second metal layer, the protective layer is exposed to air. This air break step alters the adhesion between the protective cap layer and the second metal layer and thereby, effects the stress imparted upon the first metal layer during silicide formation. The result is a more tensile silicide that is optimal for n-FET performance. Additionally, the method allows such a tensile silicide region to be formed using a relatively thin first metal layer-protective cap layer-second metal layer stack, and particularly, a relatively thin second metal layer, to minimize mechanical energy build up at the junctions between the gate conductor and the sidewall spacers to avoid silicon bridging.