Abstract:
A method for enhancing spatial resolution of a transmission electron microscopy TEM) system configured for electron holography. In an exemplary embodiment, the method includes configuring a first lens to form an initial virtual source with respect to an incident parallel beam, the initial virtual source positioned at a back focal plane of said first lens. A second lens is configured to form an intermediate virtual source with respect to the incident parallel beam, the position of said intermediate virtual source being dependent upon a focal length of the first lens and a focal length of the second lens. A third lens is configured to form a final virtual source with respect to the incident parallel beam, wherein the third lens has a focal length such that a front focal plane of the third lens lies beyond the position of the intermediate virtual source, with respect to a biprism location.
Abstract:
A method of forming a semiconductor structure comprising a first strained semiconductor layer over an insulating layer is provided in which the first strained semiconductor layer is relatively thin (less than about 500 Å) and has a low defect density (stacking faults and threading defects). The method of the present invention begins with forming a stress-providing layer, such a SiGe alloy layer over a structure comprising a first semiconductor layer that is located atop an insulating layer. The stress-providing layer and the first semiconductor layer are then patterned into at least one island and thereafter the structure containing the at least one island is heated to a temperature that causes strain transfer from the stress-providing layer to the first semiconductor layer. After strain transfer, the stress-providing layer is removed from the structure to form a first strained semiconductor island layer directly atop said insulating layer.
Abstract:
A method for preparing a semiconductor material for formation of a silicide layer on selected areas thereupon is disclosed. In an exemplary embodiment of the invention, the method includes removing at least one of a nitride and an oxynitride film from the selected areas, removing metallic particles from the selected areas, removing surface particles from the selected areas, removing organics from the selected areas, and removing an oxide layer from the selected areas.
Abstract:
The present invention provides a method for enhancing uni-directional diffusion of a metal during silicidation by using a metal-containing silicon alloy in conjunction with a first anneal in which two distinct thermal cycles are performed. The first thermal cycle of the first anneal is performed at a temperature that is capable of enhancing the uni-directional diffusion of metal, e.g., Co and/or Ni, into a Si-containing layer. The first thermal cycle causes an amorphous metal-containing silicide to form. The second thermal cycle is performed at a temperature that converts the amorphous metal-containing silicide into a crystallized metal rich silicide that is substantially non-etchable as compared to the metal-containing silicon alloy layer or a pure metal-containing layer. Following the first anneal, a selective etch is performed to remove any unreacted metal-containing alloy layer from the structure. A second anneal is performed to convert the metal rich silicide phase formed by the two thermal cycles of the first anneal into a metal silicide phase that is in its lowest resistance phase. A metal silicide is provided whose thickness is self-limiting.
Abstract:
A method of fabricating high-quality, substantially relaxed SiGe-on-insulator substrate materials which may be used as a template for strained Si is described. A silicon-on-insulator substrate with a very thin top Si layer is used as a template for compressively strained SiGe growth. Upon relaxation of the SiGe layer at a sufficient temperature, the nature of the dislocation motion is such that the strain-relieving defects move downward into the thin Si layer when the buried oxide behaves semi-viscously. The thin Si layer is consumed by oxidation of the buried oxide/thin Si interface. This can be accomplished by using internal oxidation at high temperatures. In this way the role of the original thin Si layer is to act as a sacrificial defect sink during relaxation of the SiGe alloy that can later be consumed using internal oxidation.
Abstract:
A method of forming a low-defect, substantially relaxed SiGe-on-insulator substrate material is provided. The method includes first forming a Ge-containing layer on a surface of a first single crystal Si layer which is present atop a barrier layer that is resistant to Ge diffusion. A heating step is then performed at a temperature that approaches the melting point of the final SiGe alloy and retards the formation of stacking fault defects while retaining Ge. The heating step permits interdiffusion of Ge throughout the first single crystal Si layer and the Ge-containing layer thereby forming a substantially relaxed, single crystal SiGe layer atop the barrier layer. Moreover, because the heating step is carried out at a temperature that approaches the melting point of the final SiGe alloy, defects that persist in the single crystal SiGe layer as a result of relaxation are efficiently annihilated therefrom. In one embodiment, the heating step includes an oxidation process that is performed at a temperature from about 1230° to about 1320° C. for a time period of less than about 2 hours. This embodiment provides SGOI substrate that have minimal surface pitting and reduced crosshatching.
Abstract:
The present invention provides a method for enhancing uni-directional diffusion of a metal during silicidation by using a metal-containing silicon alloy in conjunction with a first anneal in which two distinct thermal cycles are performed. The first thermal cycle of the first anneal is performed at a temperature that is capable of enhancing the uni-directional diffusion of metal, e.g., Co and/or Ni, into a Si-containing layer. The first thermal cycle causes an amorphous metal-containing silicide to form. The second thermal cycle is performed at a temperature that converts the amorphous metal-containing silicide into a crystallized metal rich silicide that is substantially non-etchable as compared to the metal-containing silicon alloy layer or a pure metal-containing layer. Following the first anneal, a selective etch is performed to remove any unreacted metal-containing alloy layer from the structure. A second anneal is performed to convert the metal rich silicide phase formed by the two thermal cycles of the first anneal into a metal silicide phase that is in its lowest resistance phase. A metal silicide is provided whose thickness is self-limiting.
Abstract:
A method of forming a low-defect, substantially relaxed SiGe-on-insulator substrate material is provided. The method includes first forming a Ge-containing layer on a surface of a first single crystal Si layer which is present atop a barrier layer that is resistant to Ge diffusion. A heating step is then performed at a temperature that approaches the melting point of the final SiGe alloy and retards the formation of stacking fault defects while retaining Ge. The heating step permits interdiffusion of Ge throughout the first single crystal Si layer and the Ge-containing layer thereby forming a substantially relaxed, single crystal SiGe layer atop the barrier layer. Moreover, because the heating step is carried out at a temperature that approaches the melting point of the final SiGe alloy, defects that persist in the single crystal SiGe layer as a result of relaxation are efficiently annihilated therefrom.
Abstract:
A method of fabricating high-quality, substantially relaxed SiGe-on-insulator substrate materials which may be used as a template for strained Si is described. A silicon-on-insulator substrate with a very thin top Si layer is used as a template for compressively strained SiGe growth. Upon relaxation of the SiGe layer at a sufficient temperature, the nature of the dislocation motion is such that the strain-relieving defects move downward into the thin Si layer when the buried oxide behaves semi-viscously. The thin Si layer is consumed by oxidation of the buried oxide/thin Si interface. This can be accomplished by using internal oxidation at high temperatures. In this way the role of the original thin Si layer is to act as a sacrificial defect sink during relaxation of the SiGe alloy that can later be consumed using internal oxidation.
Abstract:
A method for preparing a transmission electron microscopy (TEM) sample for electron holography includes forming a sacrificial material over an area of interest on the sample, and polishing the sample to a desired thickness, wherein the area of interest is protected from rounding during the polishing. The sacrificial material is removed from the sample following the polishing.