摘要:
A process for preparing an overcoat for an imaging member having a substrate, a charge transport layer, and an overcoat positioned on the charge transport layer, and the process includes combining a prepolymer having a reactive group selected from the group consisting of hydroxyl, carboxylic acid and amide groups, a melamine formaldehyde crosslinking agent, an acid catalyst, and an alcohol-soluble small molecule to form an overcoat solution; and subsequently providing the overcoat solution onto the charge transport layer to form an overcoat layer.
摘要:
A charge transport layer composition for a photoreceptor includes at least a binder, at least one arylamine charge transport material, e.g., N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(2,2′-biphenyl)-4,4′-diamine, and at least one polymer containing carboxylic acid groups or groups capable of forming carboxylic acid groups. The charge transport layer forms a layer of photoreceptor, which also includes an optional anti-curl layer, a substrate, an optional hole blocking layer, an optional adhesive layer, a charge generating layer, and optionally one or more overcoat or protective layers.
摘要:
A charge transport layer composition for a photoreceptor includes at least a binder and a charge transport material of about 100% to about 40% by weight of a total of the charge transport layer N,N-dimethylphenyl)-4-biphenylamine and about 0% to about 60% N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine, and wherein the total charge transport material in the composition is 48% or less of the total solids of the composition. The charge transport layer forms a layer of a photoreceptor, which also includes an optional anti-curl layer, a substrate, an optional hole blocking layer, an optional adhesive layer, a charge generating layer, and optionally one or more overcoat or protective layers.
摘要:
An imaging member having a charge transport layer is provided. The charge transport layer includes a plurality of charge transport layers coated from solutions of similar or different compositions or concentrations, wherein the upper or additional transport layer(s) comprise a lower concentration of charge transport compound than the first (bottom) charge transport layer. The charge transport compound included in the first (bottom) charge transport layer may either be the same or different from that included in the additional charge transport layers. The charge transport compound in one or more of the layers is dissolved or molecularly dispersed in an electrically inactive polymer material to form a solid solution. In such a construction, the resulting charge transport layer exhibits enhanced cracking suppression, improves wear resistance, provides excellent imaging member electrical performance, and delivers improved print quality.
摘要:
Disclosed is a process for the preparation of poly(vinylbenzyl alcohol) by, for example the hydrolysis of poly(vinylbenzyl acetate) in the presence of a basic catalyst in an organic solvent.
摘要:
A photoconductive imaging member containing a supporting substrate, a photogenerating layer, a charge transport layer, and in contact with the charge transport layer a layer comprised of a polymer and a yellow dye of the formula
摘要:
A photoconductive imaging member containing an optional supporting substrate, an optional hole blocking layer thereover, a photogenerating layer and a charge transport layer, and wherein the charge transport layer contains a phenol of, for example, the alternative formulas
摘要:
A photoconductive imaging member comprised of an optional supporting substrate, a hole blocking layer thereover, a photogenerating layer, and a charge transport layer, and wherein the hole blocking layer is comprised of a pyrolyzed polyacrylonitrile.
摘要:
An electrophotographic imaging member includes a substrate, a charge generating layer, a charge transport layer, and an overcoating layer, where the overcoating layer includes a terphenyl arylamine dissolved or molecularly dispersed in a polymer binder.
摘要:
A photoconductive imaging member comprised of an optional supporting substrate, a hole blocking layer thereover, a photogenerating layer, and a charge transport layer, and wherein the hole blocking layer is comprised of a pyrolyzed polyacrylonitrile.