摘要:
The synthesizing circuit inputs signals representing the brightness coefficient K2 and the brightness coefficient K3 from the multiplexer, and inputs the overscanned frame image data D1 in pixel units from the first latch circuit. When the start frame image read the third time and the after frame image read the first time are input simultaneously, the synthesizing circuit calculates the brightness coefficient K2 for the brightness value of the pixels of the start frame image, and calculates the brightness coefficient K3 for the brightness value of the pixel of the after frame image. Then, it synthesizes the pixels of the start frame image and the pixels of the after frame image for which the respective brightness coefficients were calculated, and generates the intermediate frame image data D2.
摘要:
The synthesizing circuit inputs signals representing the brightness coefficient K2 and the brightness coefficient K3 from the multiplexer, and inputs the overscanned frame image data D1 in pixel units from the first latch circuit. When the start frame image read the third time and the after frame image read the first time are input simultaneously, the synthesizing circuit calculates the brightness coefficient K2 for the brightness value of the pixels of the start frame image, and calculates the brightness coefficient K3 for the brightness value of the pixel of the after frame image. Then, it synthesizes the pixels of the start frame image and the pixels of the after frame image for which the respective brightness coefficients were calculated, and generates the intermediate frame image data D2. As a result, it moving image flicker is suppressed using an easier method than in the past, and it is possible to realize smoother moving image display.
摘要:
In the moving image display device of the invention, a synthesis circuit inputs signals representing specified values of pixel rate factors R2 and R3 from a pixel rate factor specification circuit, while inputting overscanned frame image data D1 in the units of pixels from a 1st latch circuit. The synthesis circuit extracts a preset number of pixels corresponding to the specified value of the pixel rate factor R2 from a prior frame image, while extracting a preset number of pixels corresponding to the specified value of the pixel rate factor R3 from a latter frame image. The positions of pixels to be extracted from the latter frame image are complementary to the positions of pixels to be extracted from the prior frame image. The synthesis circuit combines the extracted pixels of the prior frame image with the extracted pixels of the latter frame image by a logical OR operation to generate intermediate frame image data D2. This technique of the invention is significantly simpler than the prior art technique but still effectively prevents flicker in a moving image to ensure smooth display of the moving image.
摘要:
In the moving image display device of the invention, a synthesis circuit inputs signals representing specified values of pixel rate factors R2 and R3 from a pixel rate factor specification circuit, while inputting overscanned frame image data D1 in the units of pixels from a 1st latch circuit. The synthesis circuit extracts a preset number of pixels corresponding to the specified value of the pixel rate factor R2 from a prior frame image, while extracting a preset number of pixels corresponding to the specified value of the pixel rate factor R3 from a latter frame image. The positions of pixels to be extracted from the latter frame image are complementary to the positions of pixels to be extracted from the prior frame image. The synthesis circuit combines the extracted pixels of the prior frame image with the extracted pixels of the latter frame image by a logical OR operation to generate intermediate frame image data D2. This technique of the invention is significantly simpler than the prior art technique but still effectively prevents flicker in a moving image to ensure smooth display of the moving image.
摘要:
A display method for a liquid crystal panel is provided. The method includes a step of scanning pixels, arranged in a matrix, in an horizontal direction and in a vertical direction, to write video signals, thereby performing display; and a step of delaying the vertical-direction scanning for writing the video signals by a predetermined amount of time and writing a first predetermined fixed-level signal to all pixels in a row specified by the vertical-direction scanning delayed by the predetermined amount of time, in a predetermined time in the horizontal blanking period, thereby performing display.
摘要:
A display method for a liquid crystal panel is provided. The method includes a step of scanning pixels, arranged in a matrix, in an horizontal direction and in a vertical direction, to write video signals, thereby performing display; and a step of delaying the vertical-direction scanning for writing the video signals by a predetermined amount of time and writing a first predetermined fixed-level signal to all pixels in a row specified by the vertical-direction scanning delayed by the predetermined amount of time, in a predetermined time in the horizontal blanking period, thereby performing display.
摘要:
This image data processing device DP1 is equipped with a frame video data acquiring unit 40 and driving video data generator 50. The frame video data acquiring unit 40 acquires first frame video data FR(N) that shows first original images, as well as second frame video data FR(N+1) that show second original images that are displayed following the first original images. The driving video data generator 50 generates first through fourth driving video data DFI1(N), DFI2(N), DFI1(N+1), DFI2(N+1) that respectively show first through fourth driving images to be sequentially displayed on the image display device. First and second driving video data DFI1(N), DFI2(N) are generated based on first frame video data FR(N). Third and fourth driving video data DFI1(N+1), DFI2(N+1) are generated based on second frame video data FR(N+1). The color of the pixel in a part of the second driving image constitutes the complementary color of the color of the corresponding pixel in the first driving image. The color of the pixel in a part of the third driving image constitutes the complementary color of the color of the corresponding pixel to the fourth driving image.
摘要:
A display method for a liquid crystal panel is provided. The method includes a step of scanning pixels, arranged in a matrix, in an horizontal direction and in a vertical direction, to write video signals, thereby performing display; and a step of delaying the vertical-direction scanning for writing the video signals by a predetermined amount of time and writing a first predetermined fixed-level signal to all pixels in a row specified by the vertical-direction scanning delayed by the predetermined amount of time, in a predetermined time in the horizontal blanking period, thereby performing display.
摘要:
A moving image display device for displaying a moving image based on moving image data includes a plurality of display elements arranged in a matrix configuration and a driver configured to drive the plurality of display elements. The plurality of display elements are divided into i (where i is an integer not lower than 2) groups respectively containing a predetermined number of rows of the display elements. The driver sequentially selects the display elements row by row in parallel for the respective i display element groups and provides the selected display elements with a drive signal in accordance with the moving image data.
摘要:
This image data processing device DP1 is equipped with a frame video data acquiring unit 40 and driving video data generator 50. The frame video data acquiring unit 40 acquires first frame video data FR(N) that shows first original images, as well as second frame video data FR(N+1) that show second original images that are displayed following the first original images. The driving video data generator 50 generates first through fourth driving video data DFI1(N), DFI2(N), DFI1(N+1), DFI2(N+1) that respectively show first through fourth driving images to be sequentially displayed on the image display device. First and second driving video data DFI1(N), DFI2(N) are generated based on first frame video data FR(N). Third and fourth driving video data DFI1(N+1), DFI2(N+1) are generated based on second frame video data FR(N+1). The color of the pixel in a part of the second driving image constitutes the complementary color of the color of the corresponding pixel in the first driving image. The color of the pixel in a part of the third driving image constitutes the complementary color of the color of the corresponding pixel to the fourth driving image.