摘要:
A semiconductor device having a bar type active pattern and a method of manufacturing the same are provided. The semiconductor device may include a semiconductor substrate having a semiconductor fin configured to protrude from a surface of the semiconductor substrate in a first direction, the semiconductor substrate having a first width and a second width crossing the first width, wherein the first width and the second width extend in a second direction. A plurality of active patterns may be arranged in the first direction with a separation gap from the semiconductor fin. A plurality of support patterns may be arranged between the semiconductor fin and one of the plurality of active patterns arranged closer to the semiconductor fin in the first direction, and between the plurality of active patterns arranged in the first direction to support the plurality of active patterns. A gate may be arranged to cross the plurality of active patterns in the second direction and to cover a portion of the at least one of the plurality of active patterns.
摘要:
A semiconductor device having a bar type active pattern and a method of manufacturing the same are provided. The semiconductor device may include a semiconductor substrate having a semiconductor fin configured to protrude from a surface of the semiconductor substrate in a first direction, the semiconductor substrate having a first width and a second width crossing the first width, wherein the first width and the second width extend in a second direction. A plurality of active patterns may be arranged in the first direction with a separation gap from the semiconductor fin. A plurality of support patterns may be arranged between the semiconductor fin and one of the plurality of active patterns arranged closer to the semiconductor fin in the first direction, and between the plurality of active patterns arranged in the first direction to support the plurality of active patterns. A gate may be arranged to cross the plurality of active patterns in the second direction and to cover a portion of the at least one of the plurality of active patterns.
摘要:
A semiconductor device that may control a formation of a channel is disclosed. The semiconductor device includes a gate region including a first area, an insulating layer disposed on portions of a top surface of the gate region corresponding to both ends portions of the first area, first and second electrodes formed on the insulating layer to be spaced apart from each other, an elastic conductive layer disposed between the first and second electrodes and the insulating layer and having a shape that varies according to an electrostatic force based on voltages applied to the first electrode, the second electrode, and the gate region, and a gate insulating region disposed between the elastic conductive layer and the first area of the gate region.
摘要:
A semiconductor device that may control a formation of a channel is disclosed. The semiconductor device includes a gate region including a first area, an insulating layer disposed on portions of a top surface of the gate region corresponding to both ends portions of the first area, first and second electrodes formed on the insulating layer to be spaced apart from each other, an elastic conductive layer disposed between the first and second electrodes and the insulating layer and having a shape that varies according to an electrostatic force based on voltages applied to the first electrode, the second electrode, and the gate region, and a gate insulating region disposed between the elastic conductive layer and the first area of the gate region.
摘要:
A Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) can be formed by growing an epitaxial semiconductor layer on an upper surface of a sacrificial crystalline structure and on a substrate to form a buried sacrificial structure. The buried sacrificial structure can be removed to form a void in place of the buried sacrificial structure and a device isolation layer can be formed in the void.
摘要:
A Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) can be formed by growing an epitaxial semiconductor layer on an upper surface of a sacrificial crystalline structure and on a substrate to form a buried sacrificial structure. The buried sacrificial structure can be removed to form a void in place of the buried sacrificial structure and a device isolation layer can be formed in the void.
摘要:
Provided are a semiconductor device including a FinFET having a metal gate electrode and a fabricating method thereof. The semiconductor device includes: an active area formed in a semiconductor substrate and protruding from a surface of the semiconductor substrate; a fin including first and second protrusions formed of a surface of the active area and parallel with each other based on a central trench formed in the active area and using upper surfaces and sides of the first and second protrusions as a channel area; a gate insulating layer formed on the active area including the fin; a metal gate electrode formed on the gate insulating layer; a gate spacer formed on a sidewall of the metal gate electrode; and a source and a drain formed in the active area beside both sides of the metal gate electrode. Here, the metal gate electrode comprises a barrier layer contacting the gate spacer and the gate insulating layer and a metal layer formed on the barrier layer.
摘要:
Gate-all-around integrated circuit devices include first and second source/drain regions on an active area of an integrated circuit substrate. The first and second source/drain regions form p-n rectifying junctions with the active area. A channel region extends between the first and second source/drain regions. An insulated gate electrode surrounds the channel region.
摘要:
A FinFET semiconductor device has an active region formed of a semiconductor substrate and projecting from a surface of the substrate. A fin having a first projection and a second projection composed of the active region are arranged in parallel and at each side of a central trench formed in a central portion of the active region. Upper surfaces and side surfaces of the first projection and the second projection comprise a channel region. A channel ion implantation layer is provided at a bottom of the central trench and at a lower portion of the fin. A gate oxide layer is provided on the fin. A gate electrode is provided on the gate oxide layer. A source region and a drain region are provided in the active region at sides of the gate electrode. A method of forming such a device is also provided.
摘要:
Gate-all-around integrated circuit devices include first and second source/drain regions on an active area of an integrated circuit substrate. The first and second source/drain regions form p-n rectifying junctions with the active area. A channel region extends between the first and second source/drain regions. An insulated gate electrode surrounds the channel region.