摘要:
Examples of a system and method for sigma-delta analog-to-digital conversion of an electrical input signal are disclosed. An electrical input signal is received. A filtered analog signal is provided based on the electrical input signal and an analog feedback signal. A digital representation of the filtered analog signal is provided, the digital representation being one of K quantization levels, wherein K is a positive integer between 2L and 2L+1, L being a positive integer. The analog feedback signal is obtained based on the digital representation.
摘要:
Examples of a system and method for sigma-delta analog-to-digital conversion of an electrical input signal are disclosed. A bandpass-filtered signal based on an electrical input signal and an analog feedback signal may be provided. A multi-bit digital representation of the bandpass-filtered signal may be provided. An analog representation of the multi-bit digital representation may be provided. A return-to-zero (RTZ) carving operation may be performed on the analog representation to obtain the analog feedback signal.
摘要:
Examples of a system and method for sigma-delta analog-to-digital conversion of an electrical input signal are disclosed. A bandpass-filtered signal based on an electrical input signal and an analog feedback signal may be provided. A multi-bit digital representation of the bandpass-filtered signal may be provided. An analog representation of the multi-bit digital representation may be provided. A return-to-zero (RTZ) carving operation may be performed on the analog representation to obtain the analog feedback signal.
摘要:
A multi-channel filtering system for use with a transceiver includes a front-end multi-pole, multi-throw switch, a back-end multi-pole, multi-throw switch, and a plurality of filters. The front-end switch includes a receive pole, a transmit pole, and a plurality of switch throws. The back-end switch also includes a receive pole, a transmit pole, and a plurality of switch throws. Each of the plurality of filters has first and second ports, each first port coupled to one of the switch throws of the front-end switch, and each second port coupled to one of the switch throws of the back-end switch. Using this configuration, filters of differing bandwidths can be switched in during signal reception and/or transmission, thereby tailoring the communication rate to the particular conditions.
摘要:
An example of a radio frequency (RF) transmitter system for communication may include a transmit pre-distortion module configured to provide a second transmit calibration signal during a transmit calibration mode based on a first transmit calibration signal and one or more transmit calibration adjustment signals. The one or more transmit calibration adjustment signals may include an offset parameter associated with DC offset and an imbalance parameter associated with at least one of gain and phase imbalances. The system may include a transmit channel frequency converter coupled to the transmit pre-distortion module. The transmit channel frequency converter may be configured to provide a fourth transmit calibration signal during the transmit calibration mode based on a third transmit calibration signal and a transmit reference signal.
摘要:
High-speed, high-performance, low-power transponders, serializers and deserializers are disclosed. A serializer may include a serdes framer interface (SFI) circuit, a clock multiplier unit, and a multiplexing circuit. A deserializer may include an input receiver circuit for receiving and adjusting an input data signal, a clock and data recovery circuit (CDR) for recovering clock and data signals, a demultiplexing circuit for splitting one or more data channels into a higher number of data channels, and a serdes framer interface (SFI) circuit for generating a reference channel and generating output data channels to be sent to a framer. The input receiver circuit may include a limiting amplifier. Each of the serializer and deserializer may further include a pseudo random pattern generator and error checker unit. The serializer and deserializer each may be integrated into its respective semiconductor chip or both may be integrated into a single semiconductor chip.
摘要:
A multidetector (40) circuit for use in a plurality of carrier recovery systems (10, 70) for recovery for a suppressed carrier modulated signal. The multidetector (40) receives demodulated, in-phase x and quadrature phase y components of a baseband signal (sn(t)) and generates output signals for use in a plurality of carrier recovery systems (10, 70). The multidetector (40) generates a lock detection signal that varies primarily in accordance with a lock signal x2y2 and a fourth-order amplitude detection signal (x2+y2)2 for use in either system. The multidetector particularly generates a phase error signal xy(x2−y2) for use in a Costas carrier recovery system (10). The multidetector also generates a second-order amplitude detection signal (x2+y2) for use in either system which can be used to adjust the amplitude of the incoming, modulated signal in order to control the loop gain of the carrier recovery phase locked loop.
摘要翻译:一种用于多个载波恢复系统(10,70)中用于恢复被抑制的载波调制信号的多检测器(40)电路。 多检测器(40)接收基带信号(sn(t))的解调的同相x和正交相位y分量,并产生用于多个载波恢复系统(10,70)的输出信号。 多检测器(40)产生主要根据锁定信号x 2 y 2和四阶振幅检测信号(x 2 + y 2)<2>而变化的锁定检测信号,用于 在任一系统中使用。 多检测器特别产生用于科斯塔斯载波恢复系统(10)中的相位误差信号xy(x 2 -y 2)。 多检测器还产生用于任一系统的二阶振幅检测信号(x 2 + y 2),该信号可用于调节输入调制信号的振幅,以便控制 载波恢复锁相环。
摘要:
An example of a method for off-line calibration of a radio frequency (RF) communication system may include one or more of the following: enabling an off-line calibration mode for an RF communication system; generating an off-line calibration signal; applying to a frequency converter a first off-line calibration signal corresponding to the generated off-line calibration signal; translating the first off-line calibration signal into a second off-line calibration signal; evaluating one or more calibration adjustment signals associated with the calibration signal to reduce error in the communication system, wherein the one or more calibration adjustment signals may include an offset parameter associated with DC offset and an imbalance parameter associated with at least one of gain and phase imbalances; storing one or more calibration adjustment signals; disabling the off-line calibration mode; applying a communication signal; and adjusting the communication signal based on the stored one or more calibration adjustment signals.
摘要:
An example of a radio frequency (RF) receiver system for communication may include a receive channel frequency converter configured to provide a second receive calibration signal during a receive calibration mode based on a first receive calibration signal and a receive reference signal. The system may include a receive pre-distortion module coupled to the receive channel frequency converter. The receive pre-distortion module may be configured to provide a fourth receive calibration signal during the receive calibration mode based on a third receive calibration signal and one or more receive calibration adjustment signals. The one or more receive calibration adjustment signals may comprise an offset parameter associated with DC offset and an imbalance parameter associated with at least one of gain and phase imbalances.
摘要:
A fractional-N synthesized chirp generator includes a fractional-N synthesizer and a digital ramp synthesizer. The fractional-N synthesizer has a frequency synthesizer and a sigma-delta modulator module. The fractional-N synthesizer is configured to receive a reference frequency input signal and a frequency control value. The fractional-N synthesizer is configured to transform the reference frequency signal and the frequency control value to a chirped radio frequency (RF) output signal in a deterministic manner. The digital ramp synthesizer is configured to receive the reference frequency input signal and configured to generate the frequency control value utilizing the reference frequency input signal. The digital ramp synthesizer is further configured to provide the frequency control value to the fractional-N synthesizer. The frequency control value varies with time.