Abstract:
An antenna array controller is configured to measure a magnitude and phase of each of a set of antenna array elements, and compensate for leakage of other elements of the set of array elements. The leakage may be compensated for by one or more mechanisms including phase cancellation by row of antenna array elements, programmatic cancellation via a single offsetting antenna array element of the antenna array elements, and deembedding array leakage by subtracting the array leakage from the measured data.
Abstract:
A measurement system and a method of removing effects of instability of the measurement system while measuring at least one S-parameter of a device under test (DUT) are provided. The method includes initially determining a characteristic of the measurement system, including identifying a location of an instability in the time domain of the measurement system; determining a change of the characteristic of the measurement system while connected to the DUT; and compensating for the determined change of the characteristic of the measurement system while connected to the DUT by removing effects of the determined change on measurements of the at least one S-parameter of the DUT.
Abstract:
A system for measuring and calibrating an antenna array having a plurality of antenna array elements each configured to individually radiate signals is described. The system includes an antenna array controller comprising a memory that stores instructions and a processor that executes the instructions. When executed by the processor, the instructions cause the system to: measure a magnitude and phase of each of a set of antenna array elements; and compensate for leakage of other antenna array elements of the set of antenna array elements.
Abstract:
Scattering parameters of a test fixture having a first port and a second port are measured by providing a test instrument; outputting a one-port reflection test signal from the test instrument to the first port with the second port terminated in a reflective termination having a known reflection coefficient, and receiving at the test instrument a one-port reflection measurement signal from the first port; subjecting the one-port reflection measurement signal to first time gating to generate a first time-gated measurement signal, the first time gating using a first gating function temporally disposed about the first port; subjecting the one-port reflection measurement signal to second time gating to generate a second time-gated measurement signal, the second time gating using a second gating function temporally disposed about the termination; and deriving the scattering parameters from the first time-gated measurement signal and the second time-gated measurement signal.
Abstract:
A radio frequency (RF) measurement system acting as a spectrum analyzer and a method of operating the same eliminates image signals from a detected input RF spectrum. The method includes determining at least three local oscillator (LO) frequencies; determining LO offsets between the LO frequencies; and mixing the LO frequencies with the input RF spectrum to provide corresponding intermediate frequency (IF) signals having an IF bandwidth, where at least one of the IF signals has the input RF spectrum mixed to a different portion of the IF bandwidth than at least one other of the IF signals, providing overlapping coverage. The method further includes acquiring ADC time records for the IF signals; performing Fourier transforms (FTs) on the ADC time records to provide IF spectrums; and detecting RF responses from the IF spectrums to determine an RF response trace corresponding to the input RF spectrum.
Abstract:
A method is provided for extending dynamic range of a receiver. The method includes receiving a known input signal at the receiver, detecting a first output signal in response to the known input signal, and determining a correction function based on the first output signal and the known input signal for compensating for non-linear distortion introduced by the receiver. The method further includes receiving an unknown input signal at the receiver, detecting a second output signal in response to the unknown input signal, and applying the correction function to the second output signal in a time domain to recover the unknown input signal.
Abstract:
Nonlinear distortion of a device under test (DUT) is detected by obtaining measurements of a multi-tone input signal from a signal generator to a DUT, to obtain a measured multi-tone input signal. Measurements are also obtained of a multi-tone output signal from the DUT that is generated based on the multi-tone input signal, to obtain a measured multi-tone output signal. A correlated part of the measured multi-tone output signal that is correlated with the measured multi-tone input signal is determined insofar as the correlated part corresponds to a frequency response function of the DUT.
Abstract:
A method is provided for calibrating a multiport measurement system having a local oscillator and a respective receiver associated with each port. The method includes performing a relative calibration by vector calibrating ports of the multiport measurement system and generating relative error-correction terms for the ports. Further, the method includes performing an absolute calibration by calibrating an amplitude response of the receivers of the multiport measurement system, and removing a local oscillator unknown phase response using a single phase reference coupled to a vector calibrated port and transferring cross-frequency phase correction terms from this vector calibrated port to the receivers of the other vector calibrated ports.
Abstract:
A method of calibrating a test instrument comprises determining a first response of a calibration device on the test instrument over a first set of operating ranges, determining a derived second response of the calibration device on the test instrument over a second set of operating ranges based on the first response, measuring the second response of the calibration device on the test instrument over the second set of operating ranges, and determining correction factors of the test instrument for the second set of operating ranges based on a comparison between the measured second response and the derived second response.
Abstract:
A method is provided for extending dynamic range of a receiver. The method includes receiving a known input signal at the receiver, detecting a first output signal in response to the known input signal, and determining a correction function based on the first output signal and the known input signal for compensating for non-linear distortion introduced by the receiver. The method further includes receiving an unknown input signal at the receiver, detecting a second output signal in response to the unknown input signal, and applying the correction function to the second output signal in a time domain to recover the unknown input signal.