Abstract:
A structure of an image processing system is disclosed in which a common bus, a plurality of image memories (VRAMs), and a plurality of data processors are installed and in which a plurality of selectors connected between each bus line of the common bus and each input end of the image memories and between each bus line of the common bus and each input end of the data processors are provided so that each selector is capable of selecting at least any one of the respective bus lines of the common bus to connect to the corresponding input end of the image memories and data processors. Therefore, data transfer between different addresses becomes possible via the common bus and simultaneous executions of calculation processings of the image data become possible. Consequently, flexibility and general-purpose utility of the system and extension of the image memories and data processors can be achieved.
Abstract:
An image pickup apparatus includes an irradiation unit for radiating, to an object, light having a plurality of wavelength regions, and an image pickup unit for picking up an image that is obtained when the light having the wavelength regions is radiated by the irradiation unit and an image that is obtained when the light is not radiated by the irradiation unit. Based on both images, a wavelength region from among the wavelength regions is determined in which the intensity of external light is low. The irradiation unit is then controlled to radiate light having an increased emission intensity for the light having the wavelength region in which the intensity of external light is low.
Abstract:
An image pickup apparatus includes an irradiation unit for radiating, to an object, light having a plurality of wavelength regions, and an image pickup unit for picking up an image that is obtained when the light having the wavelength regions is radiated by the irradiation unit and an image that is obtained when the light is not radiated by the irradiation unit. Based on both images, a wavelength region from among the wavelength regions is determined in which the intensity of external light is low. The irradiation unit is then controlled to radiate light having an increased emission intensity for the light having the wavelength region in which the intensity of external light is low.
Abstract:
In road white line detecting apparatus and method, a CCD camera is installed to photograph a road surface, an edge image is generated from a road surface image photographed and outputted by the CCD camera, edge positions of a smear are detected from a region of the generated edge image which is determined on the basis of a previously detected position of a white line on the road surface, smear edges corresponding to the edge positions of the smear are generated from the generated edge image, and the present position of the white line are detected from the generated edge image from which the smear edges have been eliminated.
Abstract:
A white line detection apparatus comprises an extraction device that extracts an image of a white line detection processing area set within a road image captured by an image-capturing device, a maximum value estimating device that estimates a maximum value among pixel values constituting an image of road surface areas other than the white line based upon the pixel values representing the image extracted by the extraction device, a contrast reducing device that reduces the contrast of an image corresponding to pixel values equal to or lower than the maximum value among the pixel values constituting the image of road surface areas other than the white line which has been estimated and a detection device that detects the white line based upon the image whose contrast has been lowered by the contrast reducing device.
Abstract:
An apparatus for model follower control of a robot. The apparatus comprises a source for generating target position data representing a target position for the robot, and an operation pattern generator responsive to the target position data for calculating target angular position data representing target angular positions of the robot for respective control periods. A step input calculating unit calculates step input data based on the target angular position data and the existing robot condition data from a first relationship programmed therein. A reference model responds to the step input data and calculates command data from a second relationship programmed therein. The second relationship is represented by a discrete equation. The command data are used along with the existing robot condition data in controlling the robot in a manner to perform continuous path operation of the robot. The first relationship is represented by an equation derived from the discrete equation used in calculating command data for a control period after a predetermined number of control periods. In another aspect, the reference model has a response characteristic determined by a first pole group and a second pole. The first pole group is set to have the shortest possible time constant, whereas the second pole is set to have a time constant to bring the reference model close to a model having a linear response characteristic.