摘要:
A connection of the stabilizer parts of a two-part stabilizer to an actuator is usually performed in a positive-locking manner, as a result of which an additional axial securing and hydraulic sealing toward the outside become necessary. To simplify the design and the manufacturing process, it is provided that the teeth between the outer rotary part (4) and the second stabilizer part (2) be made clearance-free and welded together by a circumferential weld seam (18), wherein the seam area is preheated to a temperature of 350° C. and subsequently cooled to a martensite content of 30% in the microstructure.
摘要:
A connection of the stabilizer parts of a two-part stabilizer to an actuator is usually performed in a positive-locking manner, as a result of which an additional axial securing and hydraulic sealing toward the outside become necessary. To simplify the design and the manufacturing process, it is provided that the teeth between the outer rotary part (4) and the second stabilizer part (2) be made clearance-free and welded together by a circumferential weld seam (18), wherein the seam area is preheated to a temperature of 350° C. and subsequently cooled to a martensite content of 30% in the microstructure.
摘要:
It is a purpose in a divided stabilizer to increase the springy lengths of the two stabilizer components. The stabilizer components (1, 1′, 2, 2′) have respective rotary parts (4, 4′, 5, 5′) attached and the rotary parts in turn have respective rotary wings (14, 16) attached. A cover flange (8′) is formed at the outer rotary part (4′). An outer rotary wing (14) is radially inwardly directed and attached to the outer rotary part (4′). An inner rotary wing (16) is radially outwardly directed and is attached to the inner rotary part (5′). A second stabilizer part (2, 2′) is attached to the inner rotary part (5′), wherein the outer rotary part (4′) with the outer rotary wing (14) moves relative to the liner rotary part (5′) with the inner rotary wing (16) up to the point where the outer rotary wing (14) contacts the inner rotary wing (16). The rotary wings (14, 16) are rotatable relative to each other up to a predetermined angle. The stabilizer is coordinated in parallel to an axle of a vehicle.
摘要:
Known oscillating motors have inter alia starting difficulties resulting from the fact that the sliding seal ring is subject to pressures applied within said ring, even at a standstill. According to the invention, an oscillating motor is provided, comprising a sliding seal ring capable of axially sliding on a journal (8) of the output shaft (7) and which rests on an internal surface of the cover (4) with a sliding and sealing surface. Annular rings which are located on the cover side of the sliding seal ring (23) are connected through pressure compensation bores (34) and pressure compensation channels (38) to the side of the sliding seal ring (23) oriented towards the pressure chamber (13) or the discharge chamber (14). Static pressure in the housing (27) of the diagonal seal ring (28) and dynamic pressure in the pressure chambers (13) can thus be compensated.
摘要:
Known oscillating motors tend to present scaling problems; in particular they are often inadequately sealed in relation to the outside. The scaling elements also have a short service life as a result of the considerable strains to which they are subjected. The invention therefore provides an oscillating motor whose annular sealing ring consists of a sliding sealing ring (23) and a soft sealing ring, said rings being positioned next to each other on a common axis. The soft sealing ring is configured as a diagonal sealing ring (28) and is located on the sides of the pressure or discharge chambers (13, 14). The sliding sealing ring (23) is configured so that it is torsionally rigid in relation to the rotor (2). For this purpose, it preferably has two axial grooves (32), said grooves being arranged so that they are parallel and in pairs. The grooves (32) correspond to driver elements (31) located on the rotor wings (10).
摘要:
Radial oscillating motors are generally fitted with an outer overflow oil line in order to protect sealing elements. This requires an over large amount of devices and system expenditure. Large amounts of installation space are also required for oscillating motors of this kind. The invention provides a radial oscillating motor wherein each bearing (29) is hydraulically connected to a discharge chamber (14) via a main duct (30) in addition to radial ducts (31, 15, 16, 35, 37, 38) and axial ducts (32, 36) in a driven shaft (7). A non-return valve opening out in the direction of the discharge chamber (14) is inserted into the ducts (31, 32, 37, 38).
摘要:
The invention relates to a stabilizer for a motor vehicle. Known one-piece stabilizers are designed either solely for operation in road traffic or solely for off-road operation. Two-piece stabilizers that comprise an engaging and disengaging clutch have disadvantages regarding quality and safety. The invention provides a clutch, drivers (14, 17) of which form at least two adjustable gaps in the peripheral direction. The gaps can be filled by at least two locking elements (25) that can be displaced to a certain extent. The locking elements (25) and said drivers (14, 17) are constantly in positive engagement with one another in the peripheral direction and are adjusted to one another in such a manner that the locking elements (25) and the drivers (14, 17) are interlocked without play in the locked final position and that they can be rotated towards one another across a limited angle in the unlocked final position.
摘要:
A method for compensating for a thermally induced deformation of press cylinders which occurs during a printing operation in a well-defined circumferential area of the radially outer surface of the cylinder includes controlling the temperature of a well-defined circumferential area of the press cylinder to compensate for the deformation.
摘要:
A sleeve, in particular a rubber-blanket sleeve, for a printing press is disclosed. The sleeve having a construction which has at least two layers, having an inner layer which is configured as a carrier layer and an outer layer which is configured as a covering layer and serves for pressure transfer, the sleeve having a hollow-cylindrical design with a cylindrical inner surface and a cylindrical outer surface. The inner layer which is configured as a carrier layer is convexly or concavely curved on the radially outer side, a layer which adjoins the carrier layer having a curvature on a radially inner side which is complementary to the curvature of the radially outer side of the carrier layer.