摘要:
A system (10) for treating tissue within a body is configured to deliver a first level of ultrasound energy to a target tissue region (42) for a first duration resulting in the generation of micro-bubbles (56) in the target tissue region, determine one or more characteristics of the target tissue region in the presence of the micro-bubbles, and deliver a second level of ultrasound energy to the target tissue region for a second duration, wherein one or both of the second energy level and the second duration are based, at least in part, on the determined one or more characteristics of the target tissue region.
摘要:
A system (10) for treating tissue within a body is configured to deliver a first level of ultrasound energy to a target tissue region (42) for a first duration resulting in the generation of micro-bubbles (56) in the target tissue region, determine one or more characteristics of the target tissue region in the presence of the micro-bubbles, and deliver a second level of ultrasound energy to the target tissue region for a second duration, wherein one or both of the second energy level and the second duration are based, at least in part, on the determined one or more characteristics of the target tissue region.
摘要:
A system for treating tissue within a body is configured to deliver a first level of ultrasound energy to a target tissue region for a first duration resulting in the generation of microbubbles in the target tissue region, determine one or more characteristics of the target tissue region in the presence of the microbubbles, and deliver a second level of ultrasound energy to the target tissue region for a second duration, wherein one or both of the second energy level and the second duration are based, at least in part, on the determined one or more characteristics of the target tissue region.
摘要:
During the thermal treatment of an anatomical zone of interest, tissue temperature within the zone may be determined with a computational model whose parameters are adjusted using spectroscopy-based temperature measurements at interfaces of fat and non-fat tissues.
摘要:
A focused ultrasound system includes an ultrasound transducer device forming an opening, and having a plurality of transducer elements positioned at least partially around the opening. A focused ultrasound system includes a structure having a first end for allowing an object to be inserted and a second end for allowing the object to exit, and a plurality of transducer elements coupled to the structure, the transducer elements located relative to each other in a formation that at least partially define an opening, wherein the transducer elements are configured to emit acoustic energy that converges at a focal zone.
摘要:
A system for focusing ultrasonic energy through intervening tissue into a target site within a tissue region includes a transducer array including transducer element, an imager for imaging the tissue region, a processor receiving images from the imager to determine boundaries between different tissue types within the intervening tissue and generate correction factors for the transducer elements to compensate for refraction occurring at the boundaries between the tissue types and/or for variations in speed of sound. A controller is coupled to the processor and the transducer array to receive the correction factors and provide excitation signals to the transducer elements based upon the correction factors. The correction factors may include phase and/or amplitude correction factors, and the phases and/or amplitudes of excitation signals provided to the transducer elements may be adjusted based upon the phase correction factors to focus the ultrasonic energy to treat tissue at the target site.
摘要:
An asymmetric ultrasound transducer array may include multiple regions or groups of transducer elements. The regions may be configured to generate respective ultrasound beams with different capabilities, such as, e.g., focusing at varying focal depths and lateral steering, and/or focusing into different volumes.
摘要:
The emission intensities of groupings of transducer elements of an ultrasound transducer array are controlled based on targeting criteria in such a manner as to simultaneously create multiple discontiguous foci, each corresponding to one of a plurality of target sites.