摘要:
A fibrous solid carbon manifold assembly and a method for producing the fibrous solid carbon manifold assembly are provided. The fibrous solid carbon manifold assembly has fibrous bodies carbonized, and a limitless number of superfine graphite filaments grown on surfaces of the carbonized fibrous bodies, in the inside of each of said fibrous bodies and in a gap between adjacent ones of said fibrous bodies. With such a configuration, the number of superfine graphite filaments can be increased more greatly.
摘要:
A fibrous solid carbon manifold assembly and a method for producing the fibrous solid carbon manifold assembly are provided. The fibrous solid carbon manifold assembly has fibrous bodies carbonized, and a limitless number of superfine graphite filaments grown on surfaces of the carbonized fibrous bodies, in the inside of each of said fibrous bodies and in a gap between adjacent ones of said fibrous bodies. With such a configuration, the number of superfine graphite filaments can be increased more greatly.
摘要:
A fibrous solid carbon manifold assembly and a method for producing the fibrous solid carbon manifold assembly are provided. The fibrous solid carbon manifold assembly has fibrous bodies carbonized, and a limitless number of superfine graphite filaments grown on surfaces of the carbonized fibrous bodies, in the inside of each of said fibrous bodies and in a gap between adjacent ones of said fibrous bodies. With such a configuration, the number of superfine graphite filaments can be increased more greatly.
摘要:
An electromagnetic wave absorber including: a porous substrate having a large number of pores piercing the porous substrate; and an absorbent film formed on circumferential surfaces of the pores and constituted by a mixture of an electromagnetic wave absorbing filler and an electromagnetic wave absorving high-molecular material, wherein the pores are not blocked with the absorbent film so that the pores are permeable to gas. Accordingly, the electromagnetic wave absorber is high in electromagnetic wave absorbing performance, can be made thin and lightweight and is so excellent in reliability that the electromagnetic wave absorbing performance can be offered over a very broad range.
摘要:
A high-sensitivity field effect transistor using as a channel ultrafine fiber elements such as carbon nanotube, and a biosensor using it. The field effect transistor comprises a substrate, a source electrode and a drain electrode arranged on the substrate, a channel for electrically connecting the source electrode with the drain electrode, and a gate electrode causing polarization due to the movement of free electrons in the substrate. For example, the substrate has a support substrate consisting of semiconductor or metal, a first insulating film formed on a first surface of the support substrate, and a second insulating film formed on a second surface of the support substrate, the source electrode, the drain electrode, and the channel arranged on the first insulating film, the gate electrode disposed on the second insulating film.
摘要:
A single-electron transistor comprising at least a substrate, a source electrode and a drain electrode formed on top of the substrate opposing to each other, and a channel arranged between the source electrode is disclosed wherein the channel is composed of ultra fine fibers. By having such a constitution, a sensor can have excellent sensitivity.
摘要:
A magnetic recording element is composed of a first magnetic film to generate spin vortex by an external magnetic field and a second magnetic film having a magnetization perpendicular to the surfaces thereof, and also an insulating layer to control (repress) a current through the magnetic recording element which is formed between the first magnetic film and the second magnetic film. A given external magnetic field is applied to the magnetic recording element, to generate a spin vortex in the first magnetic film and then, generate a vertical magnetization at the center of the spin vortex. Then, a given data is written on the vertical magnetization.
摘要:
A single-electron transistor comprising at least a substrate, a source electrode and a drain electrode formed on top of the substrate opposing to each other, and a channel arranged between the source electrode is disclosed wherein the channel is composed of ultra fine fibers. By having such a constitution, a sensor can have excellent sensitivity.
摘要:
A laser welding apparatus includes a laser welding head and a laser welding head position-controlling apparatus. The laser welding head includes a laser irradiating body with an inert gas nozzle to blow off an inert gas for welding parts of members to be welded and at least one shielding gas nozzle, at the outside of the inert gas nozzle, to blow off a shielding gas for the surrounding area of the welding parts, and plural semiconductor lasers to oscillate plural linear laser beams for measuring the welding state of the members to be welded. The laser welding head position-controlling apparatus includes an imaging apparatus with a band-pass filter therein to pass through only the reflected linear laser beams to take in, as an image, the measured welding state by the reflected linear laser beams, and an image processor to process the image of the measured welding state.
摘要:
This invention provides a process for producing a carbon nanotube electric field effect transistor that can improve yield in channel preparation. Carbon nanotubes dispersed in a mixed acid composed of sulfuric acid and nitric acid are subjected to radical treatment with aqueous hydrogen peroxide to cut the carbon nanotubes and thus to provide carboxyl-introduced carbon nanotube fragments. The carbon nanotube fragments are attached, through a covalent bond and/or an electrostatic bond, to a site, where a source electrode is to be formed, and a site where a drain electrode is to be formed, in a substrate with a functional group, to be attached to a carboxyl group, introduced thereinto. The carbon nanotube fragments attached to the substrate are attached to carbon nanotubes as channels through n-n interaction to fix the carbon nanotubes as channels to the substrate.