摘要:
A silicon-silicon oxide-lithium composite comprises a silicon-silicon oxide composite having such a structure that silicon grains having a size of 0.5-50 nm are dispersed in silicon oxide, the silicon-silicon oxide composite being doped with lithium. Using the silicon-silicon oxide-lithium composite as a negative electrode material, a lithium ion secondary cell having a high initial efficiency and improved cycle performance can be constructed.
摘要:
A silicon-silicon oxide-lithium composite comprises a silicon-silicon oxide composite having such a structure that silicon grains having a size of 0.5-50 nm are dispersed in silicon oxide, the silicon-silicon oxide composite being doped with lithium. Using the silicon-silicon oxide-lithium composite as a negative electrode material, a lithium ion secondary cell having a high initial efficiency and improved cycle performance can be constructed.
摘要:
A negative electrode material for nonaqueous electrolyte secondary batteries comprises composite particles which are prepared by coating surfaces of particles having silicon nano-particles dispersed in silicon oxide with a carbon coating, and etching the coated particles in an acidic atmosphere. The silicon nano-particles have a size of 1-100 nm. The composite particles contain oxygen and silicon in a molar ratio: O
摘要:
A SiCO—Li composite is prepared by causing a reactive silane and/or siloxane having crosslinkable groups to crosslink, sintering the crosslinked product into an inorganic Si—C—O composite, and doping the Si—C—O composite with lithium. When the SiCO—Li composite is used as a negative electrode, a lithium ion secondary cell exhibits good cycle performance, unique discharge characteristics and improved initial efficiency.
摘要:
A sintered silicon oxide for film vapor deposition having a density of 1.0 to 2.0 g/cm3, three-point flexural strength of at least 50 g/mm2, and a BET specific surface area of 0.1 to 20 m2/g is provided. When this sintered silicon oxide is used for evaporation source of a film, pin holes and other defects of the film caused by the problematic splash phenomenon can be reliably prevented and stable production of a reliable package material having excellent gas barrier property is been enabled. This invention also provides a method for producing such sintered silicon oxide, and this method can be used in a large scale production without requiring any special technology, and therefore, this method is capable of supplying the market with the sintered silicon oxide at reduced cost.
摘要:
A negative electrode material comprising composite particles having silicon nano-particles dispersed in silicon oxide is suited for use in nonaqueous electrolyte secondary batteries. The silicon nano-particles have a size of 1-100 nm. The composite particles contain oxygen and silicon in a molar ratio: 0
摘要:
A sintered silicon oxide for film vapor deposition having a density of 1.0 to 2.0 g/cm3, three-point flexural strength of at least 50 g/mm2, and a BET specific surface area of 0.1 to 20 m2/g is provided. When this sintered silicon oxide is used for evaporation source of a film, pin holes and other defects of the film caused by the problematic splash phenomenon can be reliably prevented and stable production of a reliable package material having excellent gas barrier property is been enabled. This invention also provides a method for producing such sintered silicon oxide, and this method can be used in a large scale production without requiring any special technology, and therefore, this method is capable of supplying the market with the sintered silicon oxide at reduced cost.
摘要翻译:提供密度为1.0〜2.0g / cm 3,三点弯曲强度为至少50g / mm 2,BET比表面积为0.1〜20m 2 / g的薄膜蒸镀烧结二氧化硅。 当该烧结氧化硅用于膜的蒸发源时,可以可靠地防止由有问题的溅射现象引起的针孔和其它缺陷,并且能够稳定地生产具有优异阻气性的可靠的封装材料。 本发明还提供了一种制造这种烧结氧化硅的方法,并且该方法可以大规模生产而不需要任何特殊技术,因此该方法能够以降低的成本为市场提供烧结氧化硅。
摘要:
A negative electrode material comprising an active material and 1-20 wt % of a polyimide resin binder is suitable for use in non-aqueous electrolyte secondary batteries. The active material comprises silicon oxide particles and 1-50 wt % of silicon particles. The negative electrode exhibits improved cycle performance while maintaining the high battery capacity and low volume expansion of silicon oxide. The non-aqueous electrolyte secondary battery has a high initial efficiency and maintains improved performance and efficiency over repeated charge/discharge cycles by virtue of mitigated volumetric changes during charge/discharge cycles.
摘要:
A negative electrode material comprising an active material and 1-20 wt % of a polyimide resin binder is suitable for use in non-aqueous electrolyte secondary batteries. The active material comprises silicon oxide particles and 1-50 wt % of silicon particles. The negative electrode exhibits improved cycle performance while maintaining the high battery capacity and low volume expansion of silicon oxide. The non-aqueous electrolyte secondary battery has a high initial efficiency and maintains improved performance and efficiency over repeated charge/discharge cycles by virtue of mitigated volumetric changes during charge/discharge cycles.
摘要:
A metallic silicon powder is prepared by effecting chemical reduction on silica stone, metallurgical refinement, and metallurgical and/or chemical purification to reduce the content of impurities. The powder is best suited as a negative electrode material for non-aqueous electrolyte secondary cells, affording better cycle performance.