摘要:
A light beam position detecting device detects the passage positions of a plurality of light beams for scanning the surface of a photosensitive drum. The light beam position detecting device has a sensor pattern for generating an output which is continuously changed in a wide range with a variation in the passage position of the light beam in a sub-scanning direction perpendicular to a main scanning direction of the light beam. The sensor pattern precisely detects the relative scanning position of the light beam in a wide range. The passage positions of the plurality of light beams for scanning the surface of the photosensitive drum are controlled to a preset position based on the output of the sensor pattern.
摘要:
A light beam position detecting device detects the passage positions of a plurality of light beams for scanning the surface of a photosensitive drum. The light beam position detecting device has a sensor pattern for generating an output which is continuously changed in a wide range with a variation in the passage position of the light beam in a sub-scanning direction perpendicular to a main scanning direction of the light beam. The sensor pattern precisely detects the relative scanning position of the light beam in a wide range. The passage positions of the plurality of light beams for scanning the surface of the photosensitive drum are controlled to a preset position based on the output of the sensor pattern.
摘要:
In a digital copying machine using a multi-beam optical system, a light beam position detector situated on a line extended from the surface of a photosensitive drum detects the passing position of each light beam scanned by a polygon mirror rotated by a polygon motor. A CPU calculates control amounts for galvanomirrors by using a beam position detector output processor, on the basis of the detection result of the beam position detector. Based on the calculated control amounts, galvanomirror drive circuits drive the galvanomirrors, thereby to control the positions of the beams in a sub-scan direction. The passing positions of the beams can be precisely detected with no special precision in assembling the optical system. In addition, the positions of the beams in the sub-scan direction can be controlled at predetermined positions, even if some change occurs in the structure of the optical system due to a variation in ambience or a variation with the passing of time.
摘要:
A light beam position detecting device detects the passage positions of a plurality of light beams for scanning the surface of a photosensitive drum. The light beam position detecting device has a sensor pattern for generating an output which is continuously changed in a wide range with a variation in the passage position of the light beam in a sub-scanning direction perpendicular to a main scanning direction of the light beam. The sensor pattern precisely detects the relative scanning position of the light beam in a wide range. The passage positions of the plurality of light beams for scanning the surface of the photosensitive drum are controlled to a preset position based on the output of the sensor pattern.
摘要:
The emission level of a laser source at the non-imaging time when image data “0” is input and the emission level at the imaging time when image data “1” is input are controlled so that each of them becomes a desired level. The light output intensity is stabilized at all times regardless of variations in ambient temperature. As a result, images uniform in density can be obtained.
摘要:
Four beams are caused to scan a scanning surface in the main scanning direction in parallel. The beams expose the target area between two optical sensors, not the surface of a photosensitive drum, to produce correction data to correct shifts in the exposure positions of the four beams in the main scanning direction with an accuracy of less than a small fraction of one pixel. On the basis of the correction data, an actual image formation area is set on the photosensitive drum. This makes it possible to always control the relative exposure scanning position accurately even when the relationship between the main scanning positions of the light beams is unknown.
摘要:
A beam position detector output processor converts an output from a beam position detector into beam position information. A main control unit detects a total offset value of a plurality of operational amplifiers constituting the processor. The detected offset value is used to compensate a determination reference value used to control the sub-scanning position of a beam, or the beam position information obtained from the beam position detector output processor. As a result, the offsets of the operational amplifiers constituting the beam position detector output processor are compensated.
摘要:
A light beam position detecting device detects the passage positions of a plurality of light beams for scanning the surface of a photosensitive drum. The light beam position detecting device has a sensor pattern for generating an output which is continuously changed in a wide range with a variation in the passage position of the light beam in a sub-scanning direction perpendicular to a main scanning direction of the light beam. The sensor pattern precisely detects the relative scanning position of the light beam in a wide range. The passage positions of the plurality of light beams for scanning the surface of the photosensitive drum are controlled to a preset position based on the output of the sensor pattern.
摘要:
A light beam position detecting device detects the passage positions of a plurality of light beams for scanning the surface of a photosensitive drum. The light beam position detecting device has a sensor pattern for generating an output which is continuously changed in a wide range with a variation in the passage position of the light beam in a sub-scanning direction perpendicular to a main scanning direction of the light beam. The sensor pattern precisely detects the relative scanning position of the light beam in a wide range. The passage positions of the plurality of light beams for scanning the surface of the photosensitive drum are controlled to a preset position based on the output of the sensor pattern.
摘要:
There is provided an image forming apparatus which can implement digital control of a laser beam scan (analog amount) that moves at high speed, without using any high-speed, multi-bit A/D converter. Upon executing a digital process on the basis of analog detection value Vo corresponding to the passage position or light beam power of a light beam with which a photosensitive drum is irradiated, comparator CMP0, comparison reference value (threshold value) Vr of which changes in correspondence with detection value (integration output) Vo, is used. New comparison reference value Vr is supplied to comparator CMP0 on the basis of digital data BMDA corresponding to output CMPOUT of this comparator.