摘要:
Provided is a method of efficiently manufacturing a high-quality laser welded steel pipe at a high yield ratio while occurrence of underfill is prevented. Specifically, welding is performed using multiple laser beams each having a spot diameter of 0.3 mm or larger on an upper surface of an open pipe (a surface of a steel strip), the plurality of laser beams being arranged such that the sum of spot lengths of the plurality of laser beams, the spot lengths extending perpendicularly to a welding line, on the surface of the steel strip is 0.5 mm or larger and such that a distance between spot centers of the plurality of laser beams in a direction of the welding line falls within 5 mm.
摘要:
A method of manufacturing a laser welded steel pipe by forming a steel strip into a cylindrical open pipe and performing laser welding on edges that includes: emitting two laser beams along the edges from an upper surface side of the open pipe, the two laser beams being transmitted through different optical fibers with in-focus spot diameters exceeding 0.3 mm; emitting leading and trailing laser beams each inclined toward a direction in which welding proceeds at an incident angle with respect to a direction perpendicular to an upper surface of the open pipe; setting the incident angle of the leading laser beam to be larger than the incident angle of the trailing laser beam; and setting a gap between a center point of the leading laser beam and a center point of the trailing laser beam on a back surface of the open pipe to 1 mm or larger.
摘要:
A steel strip is formed into a cylinder so that opposite ends of the steel strip face each other, while continuously conveying the steel strip. The opposite ends are melted across the entire thickness by irradiating the opposite ends with a high-energy-density beam while applying a pressure with squeeze rolls. A seam is formed by joining the opposite ends, and excess weld metal of the seam on the outer and inner sides of the obtained welded steel pipe is removed by cutting. A repaired seam is then formed by remelting and solidifying a region on the inner side of the welded steel pipe, the region having a depth of 0.5 mm or more from the surface and a width of double or more the width of the seam, and in addition, the center line of the seam is made to coincide with the center line of the repaired seam.
摘要:
There is provided a method for manufacturing a laser welded steel pipe in which the status of laser welding is accurately assessed, and the assessment is used to modify welding conditions, so that laser welded steel pipes can be manufactured at a high yield rate and in a stable manner. Irradiation point(s) of laser beam(s), with which the longitudinal edges are irradiated from the side of the outer surface, are monitored from the side of the inner surface of an open pipe, and then conditions of welding with the laser beam(s) are assessed to be kept unchanged if any keyhole is found penetrating out of the inner surface of the open pipe, or modified if no keyhole is found penetrating out of the inner surface of the open pipe.
摘要:
There is provided a method for manufacturing a laser welded steel pipe in which the status of laser welding is accurately assessed, and the assessment is used to modify welding conditions, so that laser welded steel pipes can be manufactured at a high yield rate and in a stable manner. Irradiation point(s) of laser beam(s), with which the longitudinal edges are irradiated from the side of the outer surface, are monitored from the side of the inner surface of an open pipe, and then conditions of welding with the laser beam(s) are assessed to be kept unchanged if any keyhole is found penetrating out of the inner surface of the open pipe, or modified if no keyhole is found penetrating out of the inner surface of the open pipe.
摘要:
A method of manufacturing a laser welded steel pipe by forming a steel strip into a cylindrical open pipe and performing laser welding on edges that includes: emitting two laser beams along the edges from an upper surface side of the open pipe, the two laser beams being transmitted through different optical fibers with in-focus spot diameters exceeding 0.3 mm; emitting leading and trailing laser beams each inclined toward a direction in which welding proceeds at an incident angle with respect to a direction perpendicular to an upper surface of the open pipe; setting the incident angle of the leading laser beam to be larger than the incident angle of the trailing laser beam; and setting a gap between a center point of the leading laser beam and a center point of the trailing laser beam on a back surface of the open pipe to 1 mm or larger.
摘要:
A steel strip is formed into a cylinder so that opposite ends of the steel strip face each other, while continuously conveying the steel strip. The opposite ends are melted across the entire thickness by irradiating the opposite ends with a high-energy-density beam while applying a pressure with squeeze rolls. A seam is formed by joining the opposite ends, and excess weld metal of the seam on the outer and inner sides of the obtained welded steel pipe is removed by cutting. A repaired seam is then formed by remelting and solidifying a region on the inner side of the welded steel pipe, the region having a depth of 0.5 mm or more from the surface and a width of double or more the width of the seam, and in addition, the center line of the seam is made to coincide with the center line of the repaired seam.
摘要:
A laser welding method includes emitting two laser beams along a weld line from an upper surface side of a workpiece, the two laser beams being transmitted through different optical fibers and having in-focus spot diameters of 0.3 mm or larger; emitting the laser beams such that a leading laser beam of the two laser beams and a trailing laser beam of the two laser beams are each inclined toward a direction in which welding proceeds at an incident angle with respect to a direction perpendicular to an upper surface of the workpiece, the leading laser beam being ahead of the trailing laser beam on the upper surface of the workpiece in the direction in which welding proceeds, the trailing laser beam being behind the leading laser beam; and setting the incident angle of the leading laser beam to be larger than the incident angle of the trailing laser beam.
摘要:
This disclosure provides a radome to be installed on an emission face side of an antenna, which includes an outer wall having a side cross-section formed in a substantially semi-circular shape to include the antenna therein, and an inner wall arranged between the outer wall and the antenna, and formed in a shape to substantially conform to the outer wall. A gap between the outer wall and the inner wall is wider near both ends on the circumference of the substantially semi-circular shape than at a substantially midpoint on the circumference of the substantially semi-circular shape.
摘要:
This disclosure provides a radome to be installed on an emission face side of an antenna, which includes an outer wall having a side cross-section formed in a substantially semi-circular shape to include the antenna therein, and an inner wall arranged between the outer wall and the antenna, and formed in a shape to substantially conform to the outer wall. A gap between the outer wall and the inner wall is wider near both ends on the circumference of the substantially semi-circular shape than at a substantially midpoint on the circumference of the substantially semi-circular shape.